Summaries for Out of Sample Prediction
Compute average prediction error from out of sample predictions
cv.summary.bas(pred, ytrue, score = "squared-error")
pred |
fitted or predicted value from the output from
|
ytrue |
vector of left out response values |
score |
function used to summarize error rate. Either "squared-error", or "miss-class" |
For squared error, the average prediction error for the Bayesian estimator error = sqrt(sum(ytrue - yhat)^2/npred) while for binary data the misclassification rate is more appropriate.
Merlise Clyde clyde@duke.edu
## Not run: library(foreign) cognitive <- read.dta("https://www.stat.columbia.edu/~gelman/arm/examples/child.iq/kidiq.dta") cognitive$mom_work <- as.numeric(cognitive$mom_work > 1) cognitive$mom_hs <- as.numeric(cognitive$mom_hs > 0) colnames(cognitive) <- c("kid_score", "hs", "iq", "work", "age") set.seed(42) n <- nrow(cognitive) test <- sample(1:n, size = round(.20 * n), replace = FALSE) testdata <- cognitive[test, ] traindata <- cognitive[-test, ] cog_train <- bas.lm(kid_score ~ ., prior = "BIC", modelprior = uniform(), data = traindata) yhat <- predict(cog_train, newdata = testdata, estimator = "BMA", se = F) cv.summary.bas(yhat$fit, testdata$kid_score) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.