Plots for the discrete Hazard and Survival Function Estimates
Plots the resulting hazard function along with the survival function estimates defined by the Markov beta process (Nieto-Barajas and Walker, 2002).
BePloth( M, type.h = "dot", add.survival = T, intervals = T, confidence = 0.95, summary = FALSE )
M |
tibble. Contains the output generated by |
type.h |
character, "line" = plots the hazard rate of each interval joined by a line, "dot" = plots the hazard rate of each interval with a dot. |
add.survival |
logical, If |
intervals |
logical. If TRUE, plots confidence bands for the selected functions including Nelson-Aalen and/or Kaplan-Meier estimate. |
confidence |
Numeric. Confidence band width. |
summary |
Logical. If |
This function returns estimators plots for the hazard rate as computed
by BeMRes
together with the Nelson-Aalen estimate along with their
confidence intervals for the data set given. Additionally, it plots the
survival function and the Kaplan-Meier estimate with their corresponding
credible intervals.
SUM.h |
Numeric tibble. Summary for the mean, median, and a
|
SUM.S |
Numeric tibble. Summary for the mean, median, and a
|
- Nieto-Barajas, L. E. & Walker, S. G. (2002). Markov beta and gamma processes for modelling hazard rates. Scandinavian Journal of Statistics 29: 413-424.
## Simulations may be time intensive. Be patient. ## Example 1 # data(psych) # timesP <- psych$time # deltaP <- psych$death # BEX1 <- BeMRes(timesP, deltaP, iterations = 3000, burn.in = 300, thinning = 1) # BePloth(BEX1) # sum <- BePloth(BEX1, type.h = "line", summary = T) ## Example 2 # data(gehan) # timesG <- gehan$time[gehan$treat == "control"] # deltaG <- gehan$cens[gehan$treat == "control"] # BEX2 <- BeMRes(timesG, deltaG, type.c = 2, c.r = rep(50, 22)) # BePloth(BEX2)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.