Plots for the Hazard and Survival Function Estimates
Plots the hazard function and with the survival function estimates defined by the Markov gamma process with and without covariates (Nieto-Barajas & Walker, 2002).
GaPloth( M, type.h = "segment", addSurvival = T, intervals = T, confidence = 0.95, summary = FALSE )
M |
tibble. Contains the output by |
type.h |
character. "segment"= use segments to plot hazard rates, "line" = link hazard rates by a line |
addSurvival |
Logical. If |
intervals |
logical. If TRUE, plots confidence bands for the selected functions including Nelson-Aalen and/or Kaplan-Meier estimate. |
confidence |
Numeric. Confidence level. |
summary |
Logical. If |
This function returns estimators plots for the resulting hazard rate as it is computed by GaMRes and CGaMRes and the Nelson-Aalen estimate along with their confidence intervals for the data set given. Additionally, it plots the survival function and the Kaplan-Meier estimate with their corresponding credible/confidence intervals.
SUM.h |
Numeric tibble. Summary for the mean, median, and a
|
SUM.S |
Numeric tibble. Summary for
the mean, median, and a |
- Nieto-Barajas, L. E. (2003). Discrete time Markov gamma processes and time dependent covariates in survival analysis. Bulletin of the International Statistical Institute 54th Session. Berlin. (CD-ROM).
- Nieto-Barajas, L. E. & Walker, S. G. (2002). Markov beta and gamma processes for modelling hazard rates. Scandinavian Journal of Statistics 29: 413-424.
## Simulations may be time intensive. Be patient. ## Example 1 # data(gehan) # timesG <- gehan$time[gehan$treat == "6-MP"] # deltaG <- gehan$cens[gehan$treat == "6-MP"] # GEX1 <- GaMRes(timesG, deltaG, K = 8, iterations = 3000) # GaPloth(GEX1) ## Example 2 # data(leukemiaFZ) # timesFZ <- leukemiaFZ$time # deltaFZ <- leukemiaFZ$delta # GEX2 <- GaMRes(timesFZ, deltaFZ, type.c = 4) # GaPloth(GEX2)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.