Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

plot.boin

Plot the flowchart and simulation results for BOIN designs


Description

Plot the objects returned by other functions, including (1) flowchart of BOIN design; (2) operating characteristics of the design, including selesction percentage and the number of patients treated at each dose; (3) the estimate of toxicity probability for each dose and corresponding 95% credible interval

Usage

## S3 method for class 'boin'
plot(x, ..., name = deparse(substitute(x)))

Arguments

x

the object returned by other functions

...

ignored arguments

name

the name of the object to be plotted. User doesn't need to input this parameter.

Value

plot() returns a figure or a series of figures depending on the object entered

Author(s)

Suyu Liu, Liangcai Zhang, Yanhong Zhou, and Ying Yuan

Examples

###### single-agent trial ######

## get dose escalation and deescalation boundaries for conducting the trial
bound <- get.boundary(target=0.3, ncohort=10, cohortsize=3)
plot(bound)


## get the operating characteristics for BOIN single agent trial
oc <- get.oc(target=0.3, p.true=c(0.05,0.15,0.3,0.45,0.6),
   ncohort=10, cohortsize=3, ntrial=1000)
summary(oc)
plot(oc)


## select the MTD based on the trial data
n <- c(3, 3, 15, 9, 0)
y <- c(0, 0, 4, 4, 0)
selmtd <- select.mtd(target=0.3, npts=n, ntox=y)
summary(selmtd)
plot(selmtd)


###### drug-combination trial ######

##### combination trial to find a single MTD  ######

## get the operating characteristics for BOIN combination trial
p.true <- matrix(c(0.01,0.03,0.10,0.20,0.30,
                0.03,0.05,0.15,0.30,0.60,
                0.08,0.10,0.30,0.60,0.75), byrow=TRUE, ncol=5)

oc.comb <- get.oc.comb(target=0.3, p.true, ncohort=20, cohortsize=3, n.earlystop=12,
     startdose=c(1,1),ntrial=100)
summary(oc.comb)
plot(oc.comb)


## select a MTD based on the trial data
n <- matrix(c(3, 5, 0, 0, 0, 7, 6, 15, 0, 0, 0, 0, 4, 0, 0), ncol=5, byrow=TRUE)
y <- matrix(c(0, 1, 0, 0, 0, 1, 1, 4, 0, 0, 0, 0, 2, 0, 0), ncol=5, byrow=TRUE)
sel.comb <- select.mtd.comb(target=0.3, npts=n, ntox=y)
summary(sel.comb)
plot(sel.comb)


##### combination trial to find a MTD contour (e.g., multiple MTDs)  #####

## get the operating characteristics for BOIN waterfall design
p.true <- matrix(c(0.01, 0.10, 0.20, 0.30,
                0.03, 0.15, 0.30, 0.60,
                0.08, 0.30, 0.60, 0.75), byrow=TRUE, ncol=4)

oc.comb2 <- get.oc.comb(target=0.3, p.true, ncohort=c(8,6,6), cohortsize=3, n.earlystop=12,
       startdose=c(1,1), ntrial=100, mtd.contour=TRUE)
summary(oc.comb2)
plot(oc.comb2)


## select the MTD contour based on the trial data
n <- matrix(c(6, 9, 24, 0,  6, 24, 9, 0,  12, 18, 0, 0), ncol=4, byrow=TRUE)
y <- matrix(c(0, 1,  5, 0,  1,  5, 4, 0,  1, 5, 0, 0), ncol=4, byrow=TRUE)
sel.comb2 <- select.mtd.comb(target=0.3, npts=n, ntox=y, mtd.contour=TRUE)
summary(sel.comb2)
plot(sel.comb2)

BOIN

Bayesian Optimal INterval (BOIN) Design for Single-Agent and Drug- Combination Phase I Clinical Trials

v2.7.2
GPL-2
Authors
Ying Yuan and Suyu Liu
Initial release
2021-01-19

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.