Prior settings
Function to provide priors and their parameters to bvar
. Used
for adjusting the parameters treated as hyperparameters, the Minnesota prior
and adding various dummy priors through the ellipsis parameter.
Note that treating psi (psi) as a hyperparameter in a
model with many variables may lead to very low acceptance rates and thus
hinder convergence.
bv_priors(hyper = "auto", mn = bv_mn(), ...)
hyper |
Character vector. Used to specify the parameters to be treated
as hyperparameters. May also be set to |
mn |
List of class |
... |
Optional lists of class |
Returns a named list of class bv_priors
with options for
bvar
.
# Extend the hyperparameters to the full Minnesota prior bv_priors(hyper = c("lambda", "alpha", "psi")) # Alternatively # bv_priors("full") # Add a dummy prior via `bv_dummy()` # Re-create the single-unit-root prior add_sur <- function(Y, lags, par) { sur <- if(lags == 1) {Y[1, ] / par} else { colMeans(Y[1:lags, ]) / par } Y_sur <- sur X_sur <- c(1 / par, rep(sur, lags)) return(list("Y" = Y_sur, "X" = X_sur)) } sur <- bv_dummy(mode = 1, sd = 1, min = 0.0001, max = 50, fun = add_sur) # Add the new prior bv_priors(hyper = "auto", sur = sur)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.