Plot Posterior Distributions
Plot posterior distributions of the parameters of the Mallows Rank model.
## S3 method for class 'BayesMallows' plot(x, burnin = x$burnin, parameter = "alpha", items = NULL, ...)
x |
An object of type |
burnin |
A numeric value specifying the number of iterations
to discard as burn-in. Defaults to |
parameter |
Character string defining the parameter to plot. Available
options are |
items |
The items to study in the diagnostic plot for |
... |
Other arguments passed to |
# The example datasets potato_visual and potato_weighing contain complete # rankings of 20 items, by 12 assessors. We first analyse these using the Mallows # model: model_fit <- compute_mallows(potato_visual) # Se the documentation to compute_mallows for how to assess the convergence # of the algorithm # We set the burnin = 1000 model_fit$burnin <- 1000 # By default, the scale parameter "alpha" is plotted plot(model_fit) ## Not run: # We can also plot the latent rankings "rho" plot(model_fit, parameter = "rho") # By default, a random subset of 5 items are plotted # Specify which items to plot in the items argument. plot(model_fit, parameter = "rho", items = c(2, 4, 6, 9, 10, 20)) # When the ranking matrix has column names, we can also # specify these in the items argument. # In this case, we have the following names: colnames(potato_visual) # We can therefore get the same plot with the following call: plot(model_fit, parameter = "rho", items = c("P2", "P4", "P6", "P9", "P10", "P20")) ## End(Not run) ## Not run: # Plots of mixture parameters: # We can run a mixture of Mallows models, using the n_clusters argument # We use the sushi example data. See the documentation of compute_mallows for a more elaborate # example model_fit <- compute_mallows(sushi_rankings, n_clusters = 5, save_clus = TRUE) model_fit$burnin <- 1000 # We can then plot the posterior distributions of the cluster probabilities plot(model_fit, parameter = "cluster_probs") # We can also get a cluster assignment plot, showing the assessors along the horizontal # axis and the clusters along the vertical axis. The color show the probability # of belonging to each clusters. The assessors are sorted along the horizontal # axis according to their maximum a posterior cluster assignment. This plot # illustrates the posterior uncertainty in cluster assignments. plot(model_fit, parameter = "cluster_assignment") # See also ?assign_cluster for a function which returns the cluster assignment # back in a dataframe. ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.