Structured Latent Class Analysis (SLCA)
This function implements a structured latent class model for polytomous item responses (Formann, 1985, 1992). Lasso estimation for the item parameters is included (Chen, Liu, Xu & Ying, 2015; Chen, Li, Liu & Ying, 2017; Sun, Chen, Liu, Ying & Xin, 2016).
slca(data, group=NULL, weights=rep(1, nrow(data)), Xdes, Xlambda.init=NULL, Xlambda.fixed=NULL, Xlambda.constr.V=NULL, Xlambda.constr.c=NULL, delta.designmatrix=NULL, delta.init=NULL, delta.fixed=NULL, delta.linkfct="log", Xlambda_positive=NULL, regular_type="lasso", regular_lam=0, regular_w=NULL, regular_n=nrow(data), maxiter=1000, conv=1e-5, globconv=1e-5, msteps=10, convM=5e-04, decrease.increments=FALSE, oldfac=0, dampening_factor=1.01, seed=NULL, progress=TRUE, PEM=TRUE, PEM_itermax=maxiter, ...) ## S3 method for class 'slca' summary(object, file=NULL, ...) ## S3 method for class 'slca' print(x, ...) ## S3 method for class 'slca' plot(x, group=1, ... )
| data | Matrix of polytomous item responses | 
| group | Optional vector of group identifiers. For  | 
| weights | Optional vector of sample weights | 
| Xdes | Design matrix for x_{ijh} with q_{ihjv} entries. Therefore, it must be an array with four dimensions referring to items (i), categories (h), latent classes (j) and λ parameters (v). | 
| Xlambda.init | Initial λ_x parameters | 
| Xlambda.fixed | Fixed λ_x parameters. These must be provided by a matrix with two columns: 1st column – Parameter index, 2nd column: Fixed value. | 
| Xlambda.constr.V | A design matrix for linear restrictions of the form V_x λ_x=c_x for the λ_x parameter. | 
| Xlambda.constr.c | A vector for the linear restriction V_x λ_x=c_x of the λ_x parameter. | 
| delta.designmatrix | Design matrix for delta parameters δ parameterizing the latent class distribution by log-linear smoothing (Xu & von Davier, 2008) | 
| delta.init | Initial δ parameters | 
| delta.fixed | Fixed δ parameters. This must be a matrix with three columns: 1st column: Parameter index, 2nd column: Group index, 3rd column: Fixed value | 
| delta.linkfct | Link function for skill space reduction.
This can be the log-linear link ( | 
| Xlambda_positive | Optional vector of logical indicating which elements of \bold{λ}_x should be constrained to be positive. | 
| regular_type | Regularization method which can be  | 
| regular_lam | Numeric. Regularization parameter | 
| regular_w | Vector for weighting the regularization penalty | 
| regular_n | Vector of regularization factor. This will be typically the sample size. | 
| maxiter | Maximum number of iterations | 
| conv | Convergence criterion for item parameters and distribution parameters | 
| globconv | Global deviance convergence criterion | 
| msteps | Maximum number of M steps in estimating b and a item parameters. The default is to use 4 M steps. | 
| convM | Convergence criterion in M step | 
| decrease.increments | Should in the M step the increments
of a and b parameters decrease during iterations?
The default is  | 
| oldfac | Factor f between 0 and 1 to control convergence behavior.
If x_t denotes the estimated parameter in iteration t,
then the regularized estimate x_t^{\ast} is obtained by
x_t^{\ast}=f x_{t-1} + (1-f) x_t. Therefore, values of
 | 
| dampening_factor | Factor larger than one defining the specified decrease in decrements in iterations. | 
| seed | Simulation seed for initial parameters. The default
of  | 
| progress | An optional logical indicating whether the function should print the progress of iteration in the estimation process. | 
| PEM | Logical indicating whether the P-EM acceleration should be applied (Berlinet & Roland, 2012). | 
| PEM_itermax | Number of iterations in which the P-EM method should be applied. | 
| object | A required object of class  | 
| file | Optional file name for a file in which  | 
| x | A required object of class  | 
| ... | Optional parameters to be passed to or from other methods will be ignored. | 
The structured latent class model allows for general constraints of items i in categories h and classes j. The item response model is
P( X_{i}=h | j )=\frac{ \exp( x_{ihj} ) }{ ∑_l \exp( x_{ilj} ) }
with linear constraints on the class specific probabilities
x_{ihj}=∑_v q_{ihjv} λ_{xv}
Linear restrictions on the λ_x parameter can be specified by
a matrix equation V_x λ_x=c_x (see Xlambda.constr.V and
Xlambda.constr.c; Neuhaus, 1996).
The latent class distribution can be smoothed by a log-linear link function (Xu & von Davier, 2008) or a logistic link function (Formann, 1992). For class j in group g employing a link function h, it holds that
h [ P( j| g) ] \propto ∑_w r_{jw} δ_{gw}
where group-specific distributions are allowed. The values
r_{jw} are specified in the design matrix delta.designmatrix.
This model contains classical uni- and multidimensional latent trait models, latent class analysis, located latent class analysis, cognitive diagnostic models, the general diagnostic model and mixture item response models as special cases (see Formann & Kohlmann, 1998; Formann, 2007).
The function also allows for regularization of λ_{xv} parameters using the lasso approach (Sun et al., 2016). More formally, the penalty function can be written as
pen( \bold{λ}_x )=p_λ ∑_v n_v w_v | λ_{xv} |
where p_λ can be specified with regular_lam,
w_v can be specified with regular_w, and
n_v can be specified with regular_n.
An object of class slca. The list contains the
following entries:
| item | Data frame with conditional item probabilities | 
| deviance | Deviance | 
| ic | Information criteria, number of estimated parameters | 
| Xlambda | Estimated λ_x parameters | 
| se.Xlambda | Standard error of λ_x parameters | 
| pi.k | Trait distribution | 
| pjk | Item response probabilities evaluated for all classes | 
| n.ik | An array of expected counts n_{cikg} of ability class c at item i at category k in group g | 
| G | Number of groups | 
| I | Number of items | 
| N | Number of persons | 
| delta | Parameter estimates for skillspace representation | 
| covdelta | Covariance matrix of parameter estimates for skillspace representation | 
| MLE.class | Classified skills for each student (MLE) | 
| MAP.class | Classified skills for each student (MAP) | 
| data | Original data frame | 
| group.stat | Group statistics (sample sizes, group labels) | 
| p.xi.aj | Individual likelihood | 
| posterior | Individual posterior distribution | 
| K.item | Maximal category per item | 
| time | Info about computation time | 
| skillspace | Used skillspace parametrization | 
| iter | Number of iterations | 
| seed.used | Used simulation seed | 
| Xlambda.init | Used initial lambda parameters | 
| delta.init | Used initial delta parameters | 
| converged | Logical indicating whether convergence was achieved. | 
If some items have differing number of categories, appropriate
class probabilities in non-existing categories per items can be
practically set to zero by loading an item for all skill classes
on a fixed λ_x parameter of a small number, e.g. -999.
The implementation of the model builds on pieces work of Anton Formann. See http://www.antonformann.at/ for more information.
Berlinet, A. F., & Roland, C. (2012). Acceleration of the EM algorithm: P-EM versus epsilon algorithm. Computational Statistics & Data Analysis, 56(12), 4122-4137.
Chen, Y., Liu, J., Xu, G., & Ying, Z. (2015). Statistical analysis of Q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110, 850-866.
Chen, Y., Li, X., Liu, J., & Ying, Z. (2017). Regularized latent class analysis with application in cognitive diagnosis. Psychometrika, 82, 660-692.
Formann, A. K. (1985). Constrained latent class models: Theory and applications. British Journal of Mathematical and Statistical Psychology, 38, 87-111.
Formann, A. K. (1992). Linear logistic latent class analysis for polytomous data. Journal of the American Statistical Association, 87, 476-486.
Formann, A. K. (2007). (Almost) Equivalence between conditional and mixture maximum likelihood estimates for some models of the Rasch type. In M. von Davier & C. H. Carstensen (Eds.), Multivariate and mixture distribution Rasch models (pp. 177-189). New York: Springer.
Formann, A. K., & Kohlmann, T. (1998). Structural latent class models. Sociological Methods & Research, 26, 530-565.
Neuhaus, W. (1996). Optimal estimation under linear constraints. Astin Bulletin, 26, 233-245.
Sun, J., Chen, Y., Liu, J., Ying, Z., & Xin, T. (2016). Latent variable selection for multidimensional item response theory models via L_1 regularization. Psychometrika, 81(4), 921-939.
Xu, X., & von Davier, M. (2008). Fitting the structured general diagnostic model to NAEP data. ETS Research Report ETS RR-08-27. Princeton, ETS.
For latent trait models with continuous latent variables see the mirt or TAM packages. For a discrete trait distribution see the MultiLCIRT package.
For latent class models see the poLCA, covLCA or randomLCA package.
For mixture Rasch or mixture IRT models see the psychomix or mRm package.
#############################################################################
# EXAMPLE 1: data.Students | (Generalized) Partial Credit Model
#############################################################################
data(data.Students, package="CDM")
dat <- data.Students[, c("mj1","mj2","mj3","mj4","sc1", "sc2") ]
# define discretized ability
theta.k <- seq( -6, 6, len=21 )
#*** Model 1: Partial credit model
# define design matrix for lambda
I <- ncol(dat)
maxK <- 4
TP <- length(theta.k)
NXlam <- I*(maxK-1) + 1       # number of estimated parameters
       # last parameter is joint slope parameter
Xdes <- array( 0, dim=c(I, maxK, TP,  NXlam ) )
# Item1Cat1, ..., Item1Cat3, Item2Cat1, ...,
dimnames(Xdes)[[1]] <- colnames(dat)
dimnames(Xdes)[[2]] <- paste0("Cat", 1:(maxK) )
dimnames(Xdes)[[3]] <- paste0("Class", 1:TP )
v2 <- unlist( sapply( 1:I, FUN=function(ii){ # ii
    paste0( paste0( colnames(dat)[ii], "_b"  ), "Cat", 1:(maxK-1) )
                }, simplify=FALSE) )
dimnames(Xdes)[[4]] <- c( v2, "a" )
# define theta design and item discriminations
for (ii in 1:I){
    for (hh in 1:(maxK-1) ){
        Xdes[ii, hh + 1,, NXlam ] <- hh * theta.k
    }
}
# item intercepts
for (ii in 1:I){
    for (hh in 1:(maxK-1) ){
        # ii <- 1  # Item    # hh <- 1  # category
        Xdes[ii,hh+1,, ( ii - 1)*(maxK-1) + hh] <- 1
    }
}
#****
# skill space designmatrix
TP <- length(theta.k)
w1 <- stats::dnorm(theta.k)
w1 <- w1 / sum(w1)
delta.designmatrix <- matrix( 1, nrow=TP, ncol=1 )
delta.designmatrix[,1] <- log(w1)
# initial lambda parameters
Xlambda.init <- c( stats::rnorm( dim(Xdes)[[4]] - 1 ), 1 )
# fixed delta parameter
delta.fixed <- cbind( 1, 1,1 )
# estimate model
mod1 <- CDM::slca( dat, Xdes=Xdes, delta.designmatrix=delta.designmatrix,
            Xlambda.init=Xlambda.init, delta.fixed=delta.fixed )
summary(mod1)
plot(mod1, cex.names=.7 )
## Not run: 
#*** Model 2: Partial credit model with some parameter constraints
# fixed lambda parameters
Xlambda.fixed <- cbind( c(1,19), c(3.2,1.52 ) )
# 1st parameter=3.2
# 19th parameter=1.52 (joint item slope)
mod2 <- CDM::slca( dat, Xdes=Xdes, delta.designmatrix=delta.designmatrix,
            delta.init=delta.init, Xlambda.init=Xlambda.init, delta.fixed=delta.fixed,
            Xlambda.fixed=Xlambda.fixed, maxiter=70 )
#*** Model 3: Partial credit model with non-normal distribution
Xlambda.fixed <- cbind(  c(1,19), c(3.2,1) ) # fix item slope to one
delta.designmatrix <- cbind( 1, theta.k, theta.k^2, theta.k^3 )
mod3 <- CDM::slca( dat, Xdes=Xdes,  delta.designmatrix=delta.designmatrix,
            Xlambda.fixed=Xlambda.fixed,  maxiter=200 )
summary(mod3)
# non-normal distribution with convergence regularizing factor oldfac
mod3a <- CDM::slca( dat, Xdes=Xdes,  delta.designmatrix=delta.designmatrix,
            Xlambda.fixed=Xlambda.fixed, maxiter=500, oldfac=.95 )
summary(mod3a)
#*** Model 4: Generalized Partial Credit Model
# estimate generalized partial credit model without restrictions on trait
# distribution and item parameters to ensure better convergence behavior
# Note that two parameters are not identifiable and information criteria
# have to be adapted.
#---
# define design matrix for lambda
I <- ncol(dat)
maxK <- 4
TP <- length(theta.k)
NXlam <- I*(maxK-1) + I       # number of estimated parameters
Xdes <- array( 0, dim=c(I, maxK, TP,  NXlam ) )
# Item1Cat1, ..., Item1Cat3, Item2Cat1, ...,
dimnames(Xdes)[[1]] <- colnames(dat)
dimnames(Xdes)[[2]] <- paste0("Cat", 1:(maxK) )
dimnames(Xdes)[[3]] <- paste0("Class", 1:TP )
v2 <- unlist( sapply( 1:I, FUN=function(ii){ # ii
    paste0( paste0( colnames(dat)[ii], "_b"  ), "Cat", 1:(maxK-1) )
                }, simplify=FALSE) )
dimnames(Xdes)[[4]] <- c( v2, paste0( colnames(dat),"_a") )
dimnames(Xdes)
# define theta design and item discriminations
for (ii in 1:I){
    for (hh in 1:(maxK-1) ){
        Xdes[ii, hh + 1,, I*(maxK-1) + ii ] <- hh * theta.k
    }
}
# item intercepts
for (ii in 1:I){
    for (hh in 1:(maxK-1) ){
        Xdes[ii,hh+1,, ( ii - 1)*(maxK-1) + hh] <- 1
    }
}
#****
# skill space designmatrix
delta.designmatrix <- cbind( 1, theta.k,theta.k^2 )
# initial lambda parameters from partial credit model
Xlambda.init <- mod1$Xlambda
Xlambda.init <- c( mod1$Xlambda[ - length(Xlambda.init) ],
         rep( Xlambda.init[ length(Xlambda.init)  ],I) )
# estimate model
mod4 <- CDM::slca( dat, Xdes=Xdes, Xlambda.init=Xlambda.init,
             delta.designmatrix=delta.designmatrix, decrease.increments=TRUE,
             maxiter=300 )
#############################################################################
# EXAMPLE 2: Latent class model with two classes
#############################################################################
set.seed(9876)
I <- 7    # number of items
# simulate response probabilities
a1 <- stats::runif(I, 0, .4 )
a2 <- stats::runif(I, .6, 1 )
N <- 1000    # sample size
# simulate data in two classes of proportions .3 and .7
N1 <- round(.3*N)
dat1 <- 1 * ( matrix(a1,N1,I,byrow=TRUE) > matrix( stats::runif( N1 * I), N1, I ) )
N2 <- round(.7*N)
dat2 <- 1 * ( matrix(a2,N2,I,byrow=TRUE) > matrix( stats::runif( N2 * I), N2, I ) )
dat <- rbind( dat1, dat2 )
colnames(dat) <- paste0("I", 1:I)
# define design matrices
TP <- 2     # two classes
# The idea is that latent classes refer to two different "dimensions".
# Items load on latent class indicators 1 and 2, see below.
Xdes <- array(0, dim=c(I,2,2,2*I) )
items <- colnames(dat)
dimnames(Xdes)[[4]] <- c(paste0( colnames(dat), "Class", 1),
          paste0( colnames(dat), "Class", 2) )
    # items, categories, classes, parameters
# probabilities for correct solution
for (ii in 1:I){
    Xdes[ ii, 2, 1, ii ] <- 1    # probabilities class 1
    Xdes[ ii, 2, 2, ii+I ] <- 1  # probabilities class 2
}
# estimate model
mod1 <- CDM::slca( dat, Xdes=Xdes )
summary(mod1)
#############################################################################
# EXAMPLE 3: Mixed Rasch model with two classes
#############################################################################
set.seed(987)
library(sirt)
# simulate two latent classes of Rasch populations
I <- 15  # 6 items
b1 <- seq( -1.5, 1.5, len=I)      # difficulties latent class 1
b2 <- b1    # difficulties latent class 2
b2[ c(4,7, 9, 11, 12, 13) ] <- c(1, -.5, -.5, .33, .33, -.66 )
N <- 3000    # number of persons
wgt <- .25       # class probability for class 1
# class 1
dat1 <- sirt::sim.raschtype( stats::rnorm( wgt*N ), b1 )
# class 2
dat2 <- sirt::sim.raschtype( stats::rnorm( (1-wgt)*N, mean=1, sd=1.7), b2 )
dat <- rbind( dat1, dat2 )
# theta grid
theta.k <- seq( -5, 5, len=9 )
TP <- length(theta.k)
#*** Model 1: Rasch model with normal distribution
maxK <- 2
NXlam <- I +1
Xdes <- array( 0, dim=c(I, maxK, TP,  NXlam ) )
dimnames(Xdes)[[1]] <- colnames(dat)
dimnames(Xdes)[[2]] <- paste0("Cat", 1:(maxK) )
dimnames(Xdes)[[4]] <- c( paste0( "b_", colnames(dat)[1:I] ), "a" )
# define item difficulties
for (ii in 1:I){
    Xdes[ii, 2,, ii ] <- -1
}
# theta design
for (tt in 1:TP){
    Xdes[1:I, 2, tt, I + 1] <- theta.k[tt]
}
# skill space definition
delta.designmatrix <- cbind( 1, theta.k^2 )
delta.fixed <- NULL
Xlambda.init <- c( stats::runif( I, -.8, .8 ), 1 )
Xlambda.fixed <- cbind( I+1, 1 )
# estimate model
mod1 <- CDM::slca( dat, Xdes=Xdes, delta.designmatrix=delta.designmatrix,
            delta.fixed=delta.fixed, Xlambda.fixed=Xlambda.fixed,
            Xlambda.init=Xlambda.init, decrease.increments=TRUE, maxiter=200 )
summary(mod1)
#*** Model 1b: Constraint the sum of item difficulties to zero
# change skill space definition
delta.designmatrix <- cbind( 1, theta.k, theta.k^2 )
delta.fixed <- NULL
# constrain sum of difficulties Xlambda parameters to zero
Xlambda.constr.V <- matrix( 1, nrow=I+1, ncol=1 )
Xlambda.constr.V[I+1,1] <- 0
Xlambda.constr.c <- c(0)
# estimate model
mod1b <- CDM::slca( dat, Xdes=Xdes, delta.designmatrix=delta.designmatrix,
            Xlambda.fixed=Xlambda.fixed, Xlambda.constr.V=Xlambda.constr.V,
            Xlambda.constr.c=Xlambda.constr.c  )
summary(mod1b)
#*** Model 2: Mixed Rasch model with two latent classes
NXlam <- 2*I +2
Xdes <- array( 0, dim=c(I, maxK, 2*TP,  NXlam ) )
dimnames(Xdes)[[1]] <- colnames(dat)
dimnames(Xdes)[[2]] <- paste0("Cat", 1:(maxK) )
dimnames(Xdes)[[4]] <- c( paste0( "bClass1_", colnames(dat)[1:I] ),
        paste0( "bClass2_", colnames(dat)[1:I] ), "aClass1", "aClass2" )
# define item difficulties
for (ii in 1:I){
    Xdes[ii, 2, 1:TP, ii ] <- -1  # first class
    Xdes[ii, 2, TP + 1:TP, I+ii ] <- -1  # second class
}
# theta design
for (tt in 1:TP){
    Xdes[1:I, 2, tt, 2*I+1 ] <- theta.k[tt]
    Xdes[1:I, 2, TP+tt, 2*I+2 ] <- theta.k[tt]
}
# skill space definition
delta.designmatrix <- matrix( 0, nrow=2*TP, ncol=4 )
delta.designmatrix[1:TP,1] <- 1
delta.designmatrix[1:TP,2] <- theta.k^2
delta.designmatrix[TP + 1:TP,3] <- 1
delta.designmatrix[TP+ 1:TP,4] <- theta.k^2
b1 <- stats::qnorm( colMeans(dat) )
Xlambda.init <- c( stats::runif( 2*I, -1.8, 1.8 ), 1,1 )
Xlambda.fixed <- cbind( c(2*I+1, 2*I+2), 1 )
# estimate model
mod2 <- CDM::slca( dat, Xdes=Xdes,  delta.designmatrix=delta.designmatrix,
            Xlambda.fixed=Xlambda.fixed, decrease.increments=TRUE,
            Xlambda.init=Xlambda.init, maxiter=1000 )
summary(mod2)
summary(mod1)
# latent class proportions
stats::aggregate( mod2$pi.k, list( rep(1:2, each=TP)), sum )
#*** Model 2b: Different parametrization with sum constraint on item difficulties
# skill space definition
delta.designmatrix <- matrix( 0, nrow=2*TP, ncol=6 )
delta.designmatrix[1:TP,1] <- 1
delta.designmatrix[1:TP,2] <- theta.k
delta.designmatrix[1:TP,3] <- theta.k^2
delta.designmatrix[TP+ 1:TP,4] <- 1
delta.designmatrix[TP+ 1:TP,5] <- theta.k
delta.designmatrix[TP+ 1:TP,6] <- theta.k^2
Xlambda.fixed <- cbind( c(2*I+1,2*I+2), c(1,1) )
b1 <- stats::qnorm( colMeans( dat ) )
Xlambda.init <- c( b1, b1 + stats::runif(I, -1, 1 ), 1, 1 )
# constraints on item difficulties
Xlambda.constr.V <- matrix( 0, nrow=NXlam, ncol=2)
Xlambda.constr.V[1:I, 1 ] <- 1
Xlambda.constr.V[I + 1:I, 2 ] <- 1
Xlambda.constr.c <- c(0,0)
# estimate model
mod2b <- CDM::slca( dat, Xdes=Xdes, delta.designmatrix=delta.designmatrix,
            Xlambda.fixed=Xlambda.fixed,  Xlambda.init=Xlambda.init,
            Xlambda.constr.V=Xlambda.constr.V, Xlambda.constr.c=Xlambda.constr.c,
            decrease.increments=TRUE, maxiter=1000 )
summary(mod2b)
stats::aggregate( mod2b$pi.k, list( rep(1:2, each=TP)), sum )
#*** Model 2c: Estimation with mRm package
library(mRm)
mod2c <- mRm::mrm(data.matrix=dat, cl=2)
plot(mod2c)
print(mod2c)
#*** Model 2d: Estimation with psychomix package
library(psychomix)
mod2d <- psychomix::raschmix(data=dat, k=2, verbose=TRUE )
summary(mod2d)
plot(mod2d)
#############################################################################
# EXAMPLE 4: Located latent class model, Rasch model
#############################################################################
set.seed(487)
library(sirt)
I <- 15  # I items
b1 <- seq( -2, 2, len=I)      # item difficulties
N <- 4000    # number of persons
# simulate 4 theta classes
theta0 <- c( -2.5, -1, 0.3, 1.3 )  # skill classes
probs0 <- c( .1, .4, .2, .3 )
TP <- length(theta0)
theta <- theta0[ rep(1:TP, round(probs0*N)  ) ]
dat <- sirt::sim.raschtype( theta, b1 )
#*** Model 1: Located latent class model with 4 classes
maxK <- 2
NXlam <- I + TP
Xdes <- array( 0, dim=c(I, maxK, TP,  NXlam ) )
dimnames(Xdes)[[1]] <- colnames(dat)
dimnames(Xdes)[[2]] <- paste0("Cat", 1:(maxK) )
dimnames(Xdes)[[3]] <- paste0("Class", 1:TP )
dimnames(Xdes)[[4]] <- c( paste0( "b_", colnames(dat)[1:I] ), paste0("theta", 1:TP) )
# define item difficulties
for (ii in 1:I){
    Xdes[ii, 2,, ii ] <- -1
}
# theta design
for (tt in 1:TP){
    Xdes[1:I, 2, tt, I + tt] <- 1
}
# skill space definition
delta.designmatrix <- diag(TP)
Xlambda.init <- c( - stats::qnorm( colMeans(dat) ), seq(-2,1,len=TP)  )
# constraint on item difficulties
Xlambda.constr.V <- matrix( 0, nrow=NXlam, ncol=1)
Xlambda.constr.V[1:I,1] <- 1
Xlambda.constr.c <- c(0)
delta.init <- matrix( c(1,1,1,1), TP, 1 )
# estimate model
mod1 <- CDM::slca( dat, Xdes=Xdes, delta.designmatrix=delta.designmatrix,
            delta.init=delta.init, Xlambda.init=Xlambda.init,
            Xlambda.constr.V=Xlambda.constr.V, Xlambda.constr.c=Xlambda.constr.c,
            decrease.increments=TRUE,  maxiter=400 )
summary(mod1)
# compare estimated and simulated theta class locations
cbind( mod1$Xlambda[ - c(1:I) ], theta0 )
# compare estimated and simulated latent class proportions
cbind( mod1$pi.k, probs0 )
#############################################################################
# EXAMPLE 5: DINA model with two skills
#############################################################################
set.seed(487)
N <- 3000   # number of persons
# define Q-matrix
I <- 9  # 9 items
NS <- 2 # 2 skills
TP <- 4 # number of skill classes
Q <- scan( nlines=3)
  1 0   1 0   1 0
  0 1   0 1   0 1
  1 1   1 1   1 1
Q <- matrix(Q, I, ncol=NS,byrow=TRUE)
# define skill distribution
alpha0 <- matrix( c(0,0,1,0,0,1,1,1), nrow=4,ncol=2,byrow=TRUE)
prob0 <- c( .2, .4, .1, .3 )
alpha <- alpha0[ rep( 1:TP, prob0*N),]
# define guessing and slipping parameters
guess <- round( stats::runif(I, 0, .4 ), 2 )
slip <- round( stats::runif(I, 0, .3 ), 2 )
# simulate data according to the DINA model
dat <- CDM::sim.din( q.matrix=Q, alpha=alpha, slip=slip, guess=guess )$dat
# define Xlambda design matrix
maxK <- 2
NXlam <- 2*I
Xdes <- array( 0, dim=c(I, maxK, TP,  NXlam ) )
dimnames(Xdes)[[1]] <- colnames(dat)
dimnames(Xdes)[[2]] <- paste0("Cat", 1:(maxK) )
dimnames(Xdes)[[3]] <- c("S00","S10","S01","S11")
dimnames(Xdes)[[4]] <- c( paste0("guess",1:I ), paste0( "antislip", 1:I ) )
dimnames(Xdes)
# define item difficulties
for (ii in 1:I){
        # define latent responses
        latresp <- 1*( alpha0 %*% Q[ii,]==sum(Q[ii,]) )[,1]
        # model slipping parameters
        Xdes[ii, 2, latresp==1, I+ii ] <- 1
        # guessing parameters
        Xdes[ii, 2, latresp==0, ii ] <- 1
}
Xdes[1,2,,]
Xdes[7,2,,]
# skill space definition
delta.designmatrix <- diag(TP)
Xlambda.init <- c( rep( stats::qlogis( .2 ), I ), rep( stats::qlogis( .8 ), I ) )
# estimate DINA model with slca function
mod1 <- CDM::slca( dat, Xdes=Xdes, delta.designmatrix=delta.designmatrix,
            Xlambda.init=Xlambda.init, decrease.increments=TRUE, maxiter=400 )
summary(mod1)
# compare estimated and simulated latent class proportions
cbind( mod1$pi.k, probs0 )
# compare estimated and simulated guessing parameters
cbind( mod1$pjk[1,,2], guess )
# compare estimated and simulated slipping parameters
cbind( 1 - mod1$pjk[4,,2], slip )
#############################################################################
# EXAMPLE 6: Investigating differential item functioning in Rasch models
#            with regularization
#############################################################################
#---- simulate data
set.seed(987)
N <- 1000   # number of persons in a group
I <- 20    # number of items
#* population parameters of two groups
mu1 <- 0
mu2 <- .6
sd1 <- 1.4
sd2 <- 1
# item difficulties
b <- seq( -1.1, 1.1, len=I )
# define some DIF effects
dif <- rep(0,I)
dif[ c(3,6,9,12)] <- c( .6, -1, .75, -.35 )
print(dif)
#* simulate datasets
dat1 <- sirt::sim.raschtype( rnorm(N, mean=mu1, sd=sd1), b=b - dif /2 )
colnames(dat1) <- paste0("I", 1:I, "_G1")
dat2 <- sirt::sim.raschtype( rnorm(N, mean=mu2, sd=sd2), b=b + dif /2 )
colnames(dat2) <- paste0("I", 1:I, "_G2")
dat <- CDM::CDM_rbind_fill( dat1, dat2 )
dat <- data.frame( "group"=rep(1:2, each=N), dat )
#-- nodes for distribution
theta.k <- seq(-4, 4, len=11)
# define design matrix for lambda
nitems <- ncol(dat) - 1
maxK <- 2
TP <- length(theta.k)
NXlam <- 2*I + 1
Xdes <- array( 0, dim=c( nitems, maxK, TP,  NXlam  ) )
dimnames(Xdes)[[1]] <- colnames(dat)[-1]
dimnames(Xdes)[[2]] <- paste0("Cat", 0:(maxK-1) )
dimnames(Xdes)[[3]] <- paste0("Theta", 1:TP )
dimnames(Xdes)[[4]] <- c( paste0("b", 1:I ), paste0("dif", 1:I ), "const" )
# define theta design
for (ii in 1:nitems){
    Xdes[ii,2,,NXlam ] <- theta.k
}
# item intercepts and DIF effects
for (ii in 1:I){
    Xdes[c(ii,ii+I),2,, ii ] <- -1
    Xdes[ii,2,,ii+I] <- - 1/2
    Xdes[ii+I,2,,ii+I] <- 1/2
}
#--- skill space designmatrix
TP <- length(theta.k)
w1 <- stats::dnorm(theta.k)
w1 <- w1 / sum(w1)
delta.designmatrix <- matrix( 1, nrow=TP, ncol=2 )
delta.designmatrix[,2] <- log(w1)
# fixed lambda parameters
Xlambda.fixed <- cbind(NXlam, 1 )
# initial Xlambda parameters
dif_sim <- 0*stats::rnorm(I, sd=.2)
Xlambda.init <- c( - stats::qnorm( colMeans(dat1) ), dif_sim, 1 )
# delta.fixed
delta.fixed <- cbind( 1, 1, 0 )
# regularization parameter
regular_lam <- .2
# weighting vector: regularize only DIF effects
regular_w <- c( rep(0,I), rep(1,I), 0 )
#--- estimation model with scad penalty
mod1 <- CDM::slca( dat[,-1], group=dat$group, Xdes=Xdes,
            delta.designmatrix=delta.designmatrix, regular_type="scad",
            Xlambda.init=Xlambda.init, delta.fixed=delta.fixed, Xlambda.fixed=Xlambda.fixed,
            regular_lam=regular_lam, regular_w=regular_w )
# compare true and estimated DIF effects
cbind( "true"=dif, "estimated"=round(coef(mod1)[seq(I+1,2*I)],2) )
summary(mod1)
## End(Not run)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.