Correcting Definiteness of a Matrix
Correcting a (possibly indefinite) symmetric matrix with chosen approach so that it will have desired definiteness type: positive or negative semi-definite (PSD, NSD).
correctionDefinite(mat, type = "PSD", method = "flip", tol = 1e-08)
mat |
symmetric matrix |
type |
string that specifies type of correction: |
method |
string that specifies method for correction: spectrum clip |
tol |
torelance value. Eigenvalues between |
list with
mat
corrected matrix
isIndefinite
boolean, whether original matrix was indefinite
lambda
the eigenvalues of the original matrix
lambdanew
the eigenvalues of the corrected matrix
U
the matrix of eigenvectors
a
the transformation vector
Martin Zaefferer and Thomas Bartz-Beielstein. (2016). Efficient Global Optimization with Indefinite Kernels. Parallel Problem Solving from Nature-PPSN XIV. Accepted, in press. Springer.
x <- list(c(2,1,4,3),c(2,4,3,1),c(4,2,1,3),c(4,3,2,1),c(1,4,3,2)) D <- distanceMatrix(x,distancePermutationInsert) is.NSD(D) #matrix should not be CNSD D <- correctionDefinite(D,type="NSD")$mat is.NSD(D) #matrix should now be CNSD # different example: PSD kernel D <- distanceMatrix(x,distancePermutationInsert) K <- exp(-0.01*D) is.PSD(K) K <- correctionDefinite(K,type="PSD")$mat is.PSD(K)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.