Kriging: Initial guess and bounds
Initialize parameter tuning for the Kriging model, setting the initial guess as well as bound constraints.
modelKrigingInit( startTheta = NULL, lowerTheta = NULL, upperTheta = NULL, useLambda, lambdaLower, lambdaUpper, combineDistances, nd, distanceParameters = F, distanceParametersLower = NA, distanceParametersUpper = NA )
startTheta |
user provided start guess (optional). |
lowerTheta |
lower boundary for theta values (log scale), the kernel parameters. |
upperTheta |
upper boundary for theta values (log scale), the kernel parameters. |
useLambda |
boolean, whether nugget effect (lambda) is used. |
lambdaLower |
lower boundary for lambda (log scale). |
lambdaUpper |
upper boundary for lambda (log scale). |
combineDistances |
boolean, whether multiple distances are combined. |
nd |
number of distance function. |
distanceParameters |
whether the distance function parameters should be optimized |
distanceParametersLower |
lower boundary for parameters of the distance function, default is |
distanceParametersUpper |
upper boundary for parameters of the distance function, default is |
a list with elements x0 (start guess), lower (lower bound), upper (upper bound).
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.