Combinatorial Efficient Global Optimization
Model-based optimization for combinatorial or mixed problems. Based on measures of distance or dissimilarity.
optimCEGO(x = NULL, fun, control = list())
x |
Optional initial design as a list. If NULL (default), |
fun |
target function to be minimized |
control |
(list), with the options of optimization and model building approaches employed:
|
a list:
xbest
best solution found
ybest
fitness of the best solution
x
history of all evaluated solutions
y
corresponding target function values f(x)
fit
model-fit created in the last iteration
fpred
prediction function created in the last iteration
count
number of performed target function evaluations
message
message string, giving information on termination reason
convergence
error/status code: -1
for termination due
to failed model building, 0
for termination due to depleted budget,
1
if attained objective value is equal to or below target (control$targetY
)
Zaefferer, Martin; Stork, Joerg; Friese, Martina; Fischbach, Andreas; Naujoks, Boris; Bartz-Beielstein, Thomas. (2014). Efficient global optimization for combinatorial problems. In Proceedings of the 2014 conference on Genetic and evolutionary computation (GECCO '14). ACM, New York, NY, USA, 871-878. DOI=10.1145/2576768.2598282 http://doi.acm.org/10.1145/2576768.2598282
Zaefferer, Martin; Stork, Joerg; Bartz-Beielstein, Thomas. (2014). Distance Measures for Permutations in Combinatorial Efficient Global Optimization. In Parallel Problem Solving from Nature - PPSN XIII (p. 373-383). Springer International Publishing.
seed <- 0 #distance dF <- distancePermutationHamming #mutation mF <- mutationPermutationSwap #recombination rF <- recombinationPermutationCycleCrossover #creation cF <- function()sample(5) #objective function lF <- landscapeGeneratorUNI(1:5,dF) #start optimization set.seed(seed) res1 <- optimCEGO(,lF,list( creationFunction=cF, distanceFunction=dF, optimizerSettings=list(budget=100,popsize=10, mutationFunction=mF,recombinationFunction=rF), evalInit=5,budget=15,targetY=0,verbosity=1,model=modelKriging, vectorized=TRUE)) ##target function is "vectorized", expects list as input set.seed(seed) res2 <- optimCEGO(,lF,list( creationFunction=cF, distanceFunction=dF, optimizerSettings=list(budget=100,popsize=10, mutationFunction=mF,recombinationFunction=rF), evalInit=5,budget=15,targetY=0,verbosity=1,model=modelRBFN, vectorized=TRUE)) ##target function is "vectorized", expects list as input res1$xbest res2$xbest
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.