Combinatorial Efficient Global Optimization
Model-based optimization for combinatorial or mixed problems. Based on measures of distance or dissimilarity.
optimCEGO(x = NULL, fun, control = list())
x |
Optional initial design as a list. If NULL (default), |
fun |
target function to be minimized |
control |
(list), with the options of optimization and model building approaches employed:
|
a list:
xbestbest solution found
ybestfitness of the best solution
xhistory of all evaluated solutions
ycorresponding target function values f(x)
fitmodel-fit created in the last iteration
fpredprediction function created in the last iteration
countnumber of performed target function evaluations
messagemessage string, giving information on termination reason
convergence error/status code: -1 for termination due
to failed model building, 0 for termination due to depleted budget,
1 if attained objective value is equal to or below target (control$targetY)
Zaefferer, Martin; Stork, Joerg; Friese, Martina; Fischbach, Andreas; Naujoks, Boris; Bartz-Beielstein, Thomas. (2014). Efficient global optimization for combinatorial problems. In Proceedings of the 2014 conference on Genetic and evolutionary computation (GECCO '14). ACM, New York, NY, USA, 871-878. DOI=10.1145/2576768.2598282 http://doi.acm.org/10.1145/2576768.2598282
Zaefferer, Martin; Stork, Joerg; Bartz-Beielstein, Thomas. (2014). Distance Measures for Permutations in Combinatorial Efficient Global Optimization. In Parallel Problem Solving from Nature - PPSN XIII (p. 373-383). Springer International Publishing.
seed <- 0 #distance dF <- distancePermutationHamming #mutation mF <- mutationPermutationSwap #recombination rF <- recombinationPermutationCycleCrossover #creation cF <- function()sample(5) #objective function lF <- landscapeGeneratorUNI(1:5,dF) #start optimization set.seed(seed) res1 <- optimCEGO(,lF,list( creationFunction=cF, distanceFunction=dF, optimizerSettings=list(budget=100,popsize=10, mutationFunction=mF,recombinationFunction=rF), evalInit=5,budget=15,targetY=0,verbosity=1,model=modelKriging, vectorized=TRUE)) ##target function is "vectorized", expects list as input set.seed(seed) res2 <- optimCEGO(,lF,list( creationFunction=cF, distanceFunction=dF, optimizerSettings=list(budget=100,popsize=10, mutationFunction=mF,recombinationFunction=rF), evalInit=5,budget=15,targetY=0,verbosity=1,model=modelRBFN, vectorized=TRUE)) ##target function is "vectorized", expects list as input res1$xbest res2$xbest
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.