Dirichlet discriminant analysis
Dirichlet discriminant analysis.
dda(xnew, x, ina)
xnew |
A matrix with the new compositional predictor data whose class you want to predict. Zeros are allowed. |
x |
A matrix with the available compositional predictor data. Zeros are allowed. |
ina |
A vector of data. The response variable, which is categorical (factor is acceptable). |
The funcitons performs maximum likelihood discriminant analysis using the Dirichlet distribution.
A vector with the estimated group.
Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.
Friedman J., Hastie T. and Tibshirani R. (2017). The elements of statistical learning. New York: Springer.
Thomas P. Minka (2003). Estimating a Dirichlet distribution. http://research.microsoft.com/en-us/um/people/minka/papers/dirichlet/minka-dirichlet.pdf
Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
x <- Compositional::rdiri(100, runif(5) ) ina <- rbinom(100, 1, 0.5) + 1 mod <- dda(x, x, ina )
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.