Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

tflr

Transformation-free linear regression for compositional responses and predictors


Description

Transformation-free linear regression for compositional responses and predictors.

Usage

tflr(y, x, xnew = NULL)

Arguments

y

A matrix with the compositional response. Zero values are allowed.

x

A matrix with the compositional predictors. Zero values are allowed.

xnew

If you have new data use it, otherwise leave it NULL.

Details

The transformation-free linear regression for compositional responses and predictors is implemented.

Value

A list including:

runtime

The time required by the regression.

loglik

The log-likelihood -∑_{i=1}^ny_i\log{y_i/\hat{y}_i}.

be

The beta coefficients.

est

The fitted values of xnew if xnew is not NULL.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Jacob Fiksel, Scott Zeger and Abhirup Datta (2020). A transformation-free linear regression for compositional outcomes and predictors. https://arxiv.org/pdf/2004.07881.pdf

See Also

Examples

library(MASS)
y <- rdiri(214, runif(3, 1, 3))
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
mod <- tflr(y, x, x)
mod

Compositional

Compositional Data Analysis

v4.6
GPL (>= 2)
Authors
Michail Tsagris [aut, cre], Giorgos Athineou [aut], Abdulaziz Alenazi [ctb]
Initial release
2021-04-27

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.