Random Forest
Random Forest via ranger. Predicts response variables or brushed set of
rows from predictor variables, using Random Forest classification or regression.
randomForest( dataset = cs.in.dataset(), preds = cs.in.predictors(), resps = cs.in.responses(), brush = cs.in.brushed(), scriptvars = cs.in.scriptvars(), return.results = FALSE, ... )
dataset |
[ |
preds |
[ |
resps |
[ |
brush |
[ |
scriptvars |
[ |
return.results |
[ |
... |
[ANY] |
The following script variables are summarized in scriptvars list:
[logical(1)]
Use brush vector as additional predictor.
Default is FALSE.
[character(1)]
Rows to use in model fit. Possible values are all, non-brushed, or
brushed.
Default is all.
[integer(1)]
Number of trees to fit in ranger.
Default is 500.
[character(1)]
Variable importance mode. For details see ranger.
Default is permutation.
[character(1)]
Handling of unordered factor covariates. For details see ranger.
Default is NULL.
Logical [TRUE] invisibly and outputs to Cornerstone or,
if return.results = TRUE, list of
resulting data.frame objects:
statistics |
General statistics about the random forest. |
importances |
Variable importance of prediction variables in descending order of importance (most important first) |
predictions |
Dataset to brush with predicted values for |
confusion |
For categorical response variables or brush state only. A table with counts of each distinct combination of predicted and actual values. |
rgobjects |
List of |
# Fit random forest to iris data:
res = randomForest(iris, c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"), "Species"
, scriptvars = list(brush.pred = FALSE, use.rows = "all", num.trees = 500
, importance.mode = "permutation"
, respect.unordered.factors = "ignore"
)
, brush = rep(FALSE, nrow(iris)), return.results = TRUE
)
# Show general statistics:
res$statistics
# Prediction
randomForestPredict(iris[, 1:4], c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")
, robject = res$rgobjects
, return.results = TRUE
)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.