Fitting metamodels
modelFit
is used to fit a metamodel of class lm
, gam
,
mars
, polymars
or km
.
modelFit (X,Y, type, ...)
X |
a data.frame containing the design of experiments |
|||||||||||||||||
Y |
a vector containing the response variable |
|||||||||||||||||
type |
represents the method used to fit the model:
|
|||||||||||||||||
... |
corresponds to the parameter(s) of the model. The list of the needed arguments for each type of models is given below:
|
A list with the following components:
X |
a data frame representing the design of experiments |
Y |
a vector representing the response |
type |
the type of metamodel |
model |
a fitted model of the specified class |
and the value of the parameter(s) depending on the fitted model.
D. Dupuy
# A 2D example Branin <- function(x1,x2) { x1 <- x1*15-5 x2 <- x2*15 (x2 - 5/(4*pi^2)*(x1^2) + 5/pi*x1 - 6)^2 + 10*(1 - 1/(8*pi))*cos(x1) + 10 } # a 2D uniform design and the value of the response at these points X <- matrix(runif(24),ncol=2,nrow=12) Z <- Branin(X[,1],X[,2]) Y <- (Z-mean(Z))/sd(Z) # construction of a linear model modLm <- modelFit(X,Y,type = "Linear",formula=Y~X1+X2+X1:X2+I(X1^2)+I(X2^2)) summary(modLm$model) ## Not run: # construction of a stepwise-selected model modStep <- modelFit(X,Y,type = "StepLinear",penalty=log(dim(X)[1]), formula=Y~X1+X2+X1:X2+I(X1^2)+I(X2^2)) summary(modStep$model) # construction of an additive model library(gam) modAm <- modelFit(X,Y,type = "Additive",formula=Y~s(X1)+s(X2)) summary(modAm$model) # construction of a MARS model of degree 2 library(mda) modMARS <- modelFit(X,Y,type = "MARS",degree=2) print(modMARS$model) # construction of a PolyMARS model with a penalty parameter equal to 1 library(polspline) modPolyMARS <- modelFit(X,Y,type = "PolyMARS",gcv=1) summary(modPolyMARS$model) # construction of a Kriging model modKm <- modelFit(X,Y,type = "Kriging") str(modKm$model) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.