Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

esagda.pred

Prediction of a new observation using discriminant analysis based on ESAGdistribution


Description

Prediction of a new observation using discriminant analysis based on ESAG distribution.

Usage

esagda.pred(ynew, y, ina)

Arguments

ynew

The new observation(s) (unit vector(s)) whose group is to be predicted.

y

A data matrix with unit vectors, i.e. spherical directional data.

ina

A vector indicating the groups of the data y.

Details

Prediction of the class of a new spherical vector assuming ESAG distribution.

Value

A vector with the predicted group of each new observation.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere. Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4), 467–491.

Paine P.J., Preston S.P., Tsagris M. and Wood A.T.A. (2017). An Elliptically Symmetric Angular Gaussian Distribution. Statistics and Computing, 28(3):689–697.

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

Examples

m1 <- rnorm(3)
m2 <- rnorm(3) + 0.5
y <- rbind( rvmf(100, m1, 3), rvmf(80, m2, 5) )
ina <- c( rep(1,100), rep(2, 80) )
ynew <- rbind(rvmf(10, m1, 10), rvmf(10, m2, 5))
id <- rep(1:2, each = 10)
g <- esagda.pred(ynew, y, ina)
table(id, g)

Directional

A Collection of R Functions for Directional Data Analysis

v4.9
GPL-2
Authors
Michail Tsagris, Giorgos Athineou, Anamul Sajib, Eli Amson, Micah J. Waldstein
Initial release
2021-03-26

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.