Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

W.QR

Build and decompose a low-rank matrix W


Description

Build and decompose a low-rank matrix from a matrix of eigenvectors and eigenvalues from principal component analysis

Usage

W.QR(U, lambda)

Arguments

U

a matrix of eigenvectors

lambda

a vector of corresponding eigenvalues

Value

W a low-rank matrix

D the number of latent factors

Q the orthogonal matrix of the W = QR matrix decomposition

R the upper triangular matrix of the W = QR matrix decomposition

Author(s)

Gabrielle Weinrott

Examples

res <- drbats.simul(N = 5, P = 100, t.range = c(5, 100), breaks = 8)
res.pca <- pca.Deville(res$X, res$t.simul, t.range = c(5, 100), breaks = 8)
Wres.pca <- W.QR(res.pca$U, res.pca$lambda)
Wres.pca

DrBats

Data Representation: Bayesian Approach That's Sparse

v0.1.5
GPL-3
Authors
Anne Bisson [cre], Gabrielle Weinrott [aut], Brigitte Charnomordic [aut], Benedicte Fontez [aut], Nadine Hilgert [aut], Susan Holmes [aut]
Initial release
2019-11-15

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.