Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

VARIMAX

varimax rotation


Description

varimax rotation

Usage

VARIMAX(loadings, normalize = TRUE, verbose)

Arguments

loadings

A loading matrix.

normalize

Should Kaiser normalization be performed? If so the rows of x are re-scaled to unit length before rotation, and scaled back afterwards. Default = TRUE.

verbose

Should detailed results be displayed in console? TRUE (default) or FALSE

Details

This function uses the R built-in varimax function and provides additional output.

Value

A list with the following elements:

loadingsNOROT

The unrotated loadings

loadingsV

The varimax-rotated loadings

rotmatV

The rotation matrix

eigenvar

Eigenvalues and factor proportions of variance

cormat_reproduced

The reproduced correlation matrix, based on the rotated loadings

Author(s)

Brian P. O'Connor

Examples

# the Harman (1967) correlation matrix
PCAoutput <- PCA(data_Harman, Nfactors = 2, Ncases=305, rotate='none', verbose=TRUE)
VARIMAX(PCAoutput$loadingsNOROT, verbose=TRUE)

# Rosenberg Self-Esteem scale items
PCAoutput <- PCA(data_RSE, corkind='polychoric', Nfactors = 2, rotate='none', verbose=TRUE)
VARIMAX(PCAoutput$loadingsNOROT, verbose=TRUE)

# NEO-PI-R scales
PCAoutput <- PCA(data_NEOPIR, Nfactors = 5, rotate='none', verbose=TRUE)
VARIMAX(PCAoutput$loadingsNOROT, verbose=TRUE)

EFA.dimensions

Exploratory Factor Analysis Functions for Assessing Dimensionality

v0.1.7.2
GPL (>= 2)
Authors
Brian P. O'Connor
Initial release
2021-02-04

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.