Effect + Residual Modelling
Effect + Residual Modelling
ER(formula, data) ## S3 method for class 'ER' print(x, ...) ## S3 method for class 'ER' plot( x, y = 1, what = "raw", col = NULL, pch = NULL, model.line = (what %in% c("raw")), ylim = NULL, ylab = "", xlab = "", main = NULL, ... ) tableER(object, variable)
formula |
a model formula specifying features and effects. |
data |
a |
x |
Object of class |
... |
Additional arguments to |
y |
Response name or number. |
what |
What part of ER to plot; |
col |
Color of points, defaults to grouping. Usually set to a factor name. |
pch |
Plot character of points, defaults to 1. Usually set to a factor name. |
model.line |
Include line indicating estimates, default = TRUE. Can be an effect name. |
ylim |
Y axis limits ( |
ylab |
Y label ( |
xlab |
X label ( |
main |
Main title, defaults to |
object |
ER object. |
variable |
Numeric for selecting a variable for extraction. |
ER
returns an object of class ER
containing effects, ER values,
fitted values, residuals, features, coefficients, dummy design, symbolic design, dimensions,
highest level interaction and feature names.
* Mosleth et al. (2021) Cerebrospinal fluid proteome shows disrupted neuronal development in multiple sclerosis. Scientific Report, 11,4087. <doi:10.1038/s41598-021-82388-w>
* E.F. Mosleth et al. (2020). Comprehensive Chemometrics, 2nd edition; Brown, S., Tauler, R., & Walczak, B. (Eds.). Chapter 4.22. Analysis of Megavariate Data in Functional Omics. Elsevier. <doi:10.1016/B978-0-12-409547-2.14882-6>
## Multiple Sclerosis data(MS, package = "ER") er <- ER(proteins ~ MS * cluster, data = MS) print(er) plot(er) # Raw data, first feature plot(er,2) # Raw data, numbered feature plot(er,'Q76L83', col='MS', pch='cluster') # Selected colour and plot character plot(er,'Q76L83', what='effect MS', model.line='effect cluster') # Comparison of factors (points and lines) # Example compound plot old.par <- par(c("mfrow", "mar")) # on.exit(par(old.par)) par(mfrow = c(3,3), mar = c(2,4,4,1)) plot(er,'Q76L83') # Raw data, named feature plot(er,'Q76L83', what='fits') # Fitted values plot(er,'Q76L83', what='residuals') # Residuals plot(er,'Q76L83', what='effect MS') # Effect levels plot(er,'Q76L83', what='effect cluster') # ----||---- plot(er,'Q76L83', what='effect MS:cluster') # ----||---- plot(er,'Q76L83', what='MS') # ER values plot(er,'Q76L83', what='cluster') # --------||--------- plot(er,'Q76L83', what='MS:cluster') # --------||--------- par(old.par) # Complete overview of ER tab <- tableER(er, 1) # In general there can be more than two, effects, more than two levels, and continuous effects: # MS$three <- factor(c(rep(1:3,33),1:2)) # er3 <- ER(proteins ~ MS * cluster + three, data = MS) ## Lactobacillus data(Lactobacillus, package = "ER") erLac <- ER(proteome ~ strain * growthrate, data = Lactobacillus) print(erLac) plot(erLac) # Raw data, first feature plot(erLac,2) # Raw data, numbered feature plot(erLac,'P.LSA0316', col='strain', pch='growthrate') # Selected colour and plot character plot(erLac,'P.LSA0316', what='strain', model.line='growthrate') # Selected model.line ## Diabetes data(Diabetes, package = "ER") erDia <- ER(transcriptome ~ surgery * T2D, data = Diabetes) print(erDia) plot(erDia) # Raw data, first feature plot(erDia,2) # Raw data, numbered feature plot(erDia,'ILMN_1720829', col='surgery', pch='T2D') # Selected colour and plot character
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.