Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

knn.reg

k Nearest Neighbor Regression


Description

k-nearest neighbor regression

Usage

knn.reg(train, test = NULL, y, k = 3, algorithm=c("kd_tree", 
        "cover_tree", "brute"))

Arguments

train

matrix or data frame of training set cases.

test

matrix or data frame of test set cases. A vector will be interpreted as a row vector for a single case. If not supplied, cross-validataion will be done.

y

reponse of each observation in the training set.

k

number of neighbours considered.

algorithm

nearest neighbor search algorithm.

Details

If test is not supplied, Leave one out cross-validation is performed and R-square is the predicted R-square.

Value

knn.reg returns an object of class "knnReg" or "knnRegCV" if test data is not supplied.

The returnedobject is a list containing at least the following components:

call

the match call.

k

number of neighbours considered.

n

number of predicted values, either equals test size or train size.

pred

a vector of predicted values.

residuals

predicted residuals. NULL if test is supplied.

PRESS

the sums of squares of the predicted residuals. NULL if test is supplied.

R2Pred

predicted R-square. NULL if test is supplied.

Note

The code for “VR” nearest neighbor searching is taken from class source

Author(s)

Shengqiao Li. To report any bugs or suggestions please email: lishengqiao@yahoo.com.

See Also

knn.

Examples

if(require(chemometrics)){
    data(PAC);
    pac.knn<- knn.reg(PAC$X, y=PAC$y, k=3);
    
    plot(PAC$y, pac.knn$pred, xlab="y", ylab=expression(hat(y)))
  }

FNN

Fast Nearest Neighbor Search Algorithms and Applications

v1.1.3
GPL (>= 2)
Authors
Alina Beygelzimer, Sham Kakadet and John Langford (cover tree library), Sunil Arya and David Mount (ANN library 1.1.2 for the kd-tree approach), Shengqiao Li
Initial release
2019-02-15

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.