Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

mse

Mean squared error


Description

the MSE is the mean of the square of the errors, corresponding to the expected value of the squared error loss or quadratic loss. The difference occurs because of randomness or because the estimator doesn't account for information that could produce a more accurate estimate.

Usage

mse(observados, estimados, k)

Arguments

observados

vector of values observed.

estimados

vector of regression model data.

k

the number of model parameters

Details

mse = (sum(estimados-observados)^2)/(length(observados)-k)

References


Fgmutils

Forest Growth Model Utilities

v0.9.5
GPL-2
Authors
Clayton Vieira Fraga Filho, Ana Paula Simiqueli, Gilson Fernandes da Silva, Miqueias Fernandes, Wagner Amorim da Silva Altoe
Initial release
2018-10-11

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.