Level Annuity
Solves for the present value, future value, number of payments/periods, interest rate, and/or the amount of the payments for a level annuity. It can also plot a time diagram of the payments.
annuity.level(pv=NA,fv=NA,n=NA,pmt=NA,i=NA,ic=1,pf=1,imm=TRUE,plot=FALSE)
pv |
present value of the annuity |
fv |
future value of the annuity |
n |
number of payments/periods |
pmt |
value of the level payments |
i |
nominal interest rate convertible ic times per year |
ic |
interest conversion frequency per year |
pf |
the payment frequency- number of payments/periods per year |
imm |
option for annuity immediate or annuity due, default is immediate (TRUE) |
plot |
option to display a time diagram of the payments |
Effective Rate of Interest: eff.i=(1+\frac{i}{ic})^{ic}-1
j=(1+eff.i)^{\frac{1}{pf}}-1
Annuity Immediate:
pv=pmt*{a_{≤ft. {\overline {\, n \,}}\! \right |j}}=pmt*\frac{1-(1+j)^{-n}}{j}
fv=pmt*{s_{≤ft. {\overline {\, n \,}}\! \right |j}}=pmt*{a_{≤ft. {\overline {\, n \,}}\! \right |j}}*(1+j)^n
Annuity Due:
pv=pmt*{\ddot {a}_{≤ft. {\overline {\, n \,}}\! \right |j}}=pmt*{a_{≤ft. {\overline {\, n \,}}\! \right |j}}*(1+j)
fv=pmt*{\ddot {s}_{≤ft. {\overline {\, n \,}}\! \right |j}}=pmt*{a_{≤ft. {\overline {\, n \,}}\! \right |j}}*(1+j)^{n+1}
Returns a matrix of the input variables and calculated unknown variables.
At least one of pv, fv, n, pmt, or i must be NA (unknown).
pv and fv cannot both be specified, at least one must be NA (unknown).
annuity.level(pv=NA,fv=101.85,n=10,pmt=8,i=NA,ic=1,pf=1,imm=TRUE) annuity.level(pv=80,fv=NA,n=15,pf=2,pmt=NA,i=.01,imm=FALSE)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.