Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

Commodities

Commodity prices


Description

Commodity prices on successive business days, Chicago Exchange These data exhibit classic randow walk behavior.

Usage

data(Commodities)

Format

The format is: List of 5 $ gold:'data.frame': 97 obs. of 3 variables: ..$ close: num [1:97] 700 671 680 677 690 ... ..$ high : num [1:97] 714 698 683 682 692 ... ..$ low : num [1:97] 700 669 664 676 684 ... $ feed:'data.frame': 95 obs. of 3 variables: ..$ close: num [1:95] 79 79 78.6 79.9 79.3 ... ..$ high : num [1:95] 80 79.5 79.2 79.9 79.8 ... ..$ low : num [1:95] 79 78.5 78.6 78.8 79.3 ... $ port:'data.frame': 99 obs. of 3 variables: ..$ close: num [1:99] 57.7 56.8 57.5 57 59 ... ..$ high : num [1:99] 59.9 57.5 58 58.1 59 ... ..$ low : num [1:99] 57.2 56.4 55.1 56.8 56.4 ... $ soy :'data.frame': 99 obs. of 3 variables: ..$ close: num [1:99] 766 790 804 794 824 ... ..$ high : num [1:99] 788 791 805 808 824 ... ..$ low : num [1:99] 764 764 778 792 809 ... $ us :'data.frame': 100 obs. of 3 variables: ..$ close: num [1:100] 91.6 91.6 91.4 91.4 91.2 ... ..$ high : num [1:100] 91.9 91.7 91.6 91.4 91.5 ... ..$ low : num [1:100] 91.6 91.5 91.3 91.3 91.1 ...

Details

Data from 1981. feed: April; gold: June, pork: March, us: March

Source

I obtained these data from a broker.

Examples

dim(Commodities$gold)
dimnames(Commodities$gold)[[2]]
TimeSeriesPlot(Commodities$gold$close)

FitAR

Subset AR Model Fitting

v1.94
GPL (>= 2)
Authors
A.I. McLeod, Ying Zhang and Changjiang Xu
Initial release
2013-03-15

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.