LS for AR(p) and Subset ARp – Short Version
For ARp subset models, the least squares estimates are computed. The exact loglikelihood is then determined. The estimated parameters are checked to see if they are in the AR admissible region.
GetFitARpLS(z, pvec)
z |
vector or ts object, the time series |
pvec |
lags included in subset AR. If pvec = 0, white noise assumed. |
The R function lsfit
is used.
a list with components:
loglikeliihood |
the exact loglikelihood |
phiHat |
estimated AR parameters |
constantTerm |
constant term in the linear regression |
pvec |
lags of estimated AR coefficient |
res |
the least squares regression residuals |
InvertibleQ |
True, if the estimated parameters are in the AR admissible region. |
yX |
the y vector and X matrix used for the regression fitting |
A.I. McLeod
McLeod, A.I. and Zhang, Y. (2006). Partial autocorrelation parameterization for subset autoregression. Journal of Time Series Analysis, 27, 599-612.
McLeod, A.I. and Zhang, Y. (2008a). Faster ARMA Maximum Likelihood Estimation, Computational Statistics and Data Analysis 52-4, 2166-2176. DOI link: http://dx.doi.org/10.1016/j.csda.2007.07.020.
McLeod, A.I. and Zhang, Y. (2008b, Submitted). Improved Subset Autoregression: With R Package. Journal of Statistical Software.
#Fit subset AR using LS #normally use FitAR ans<-FitAR(SeriesA, c(1,2,7), ARModel="ARp", MLEQ=FALSE) #could also use FitARp ans<-FitARp(SeriesA, c(1,2,7)) #for some applications GetFitARpLS is simpler and faster ansLS<-GetFitARpLS(SeriesA, c(1,2,7)) ansLS
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.