MEPS data
2008 MEPS data.
data(meps)
meps
is a 18592 row data frame with the following columns
body mass index.
age in years.
equal to 1 if male.
levels: 2 white, 3 black, 4 native American, 5 others.
years of education.
levels: 5 excellent, 6 very good, 7 good, 8 fair, 9 poor.
equal to 1 if health limits physical activity.
levels: 2 northeast, 3 mid-west, 4 south, 5 west.
equal to 1 if individual has private health insurance.
equal to 1 if at least one visit to hospital outpatient departments.
equal to 1 if diabetic.
equal to 1 if hypertensive.
equal to 1 if hyperlipidemic.
income (000's).
The data have been obtained from http://www.meps.ahrq.gov/.
## Not run: ################################################### ################################################### library("GJRM") data("meps", package = "GJRM") ################################################### # Bivariate brobit models with endogenous treatment ################################################### treat.eq <- private ~ s(bmi) + s(income) + s(age) + s(education) + as.factor(health) + as.factor(race) + as.factor(limitation) + as.factor(region) + gender + hypertension + hyperlipidemia + diabetes out.eq <- visits.hosp ~ private + s(bmi) + s(income) + s(age) + s(education) + as.factor(health) + as.factor(race) + as.factor(limitation) + as.factor(region) + gender + hypertension + hyperlipidemia + diabetes f.list <- list(treat.eq, out.eq) mr <- c("probit", "probit") bpN <- gjrm(f.list, data = meps, margins = mr, Model = "B") bpF <- gjrm(f.list, data = meps, margins = mr, BivD = "F", Model = "B") bpC0 <- gjrm(f.list, data = meps, margins = mr, BivD = "C0", Model = "B") bpC180 <- gjrm(f.list, data = meps, margins = mr, BivD = "C180", Model = "B") bpJ0 <- gjrm(f.list, data = meps, margins = mr, BivD = "J0", Model = "B") bpJ180 <- gjrm(f.list, data = meps, margins = mr, BivD = "J180", Model = "B") bpG0 <- gjrm(f.list, data = meps, margins = mr, BivD = "G0", Model = "B") bpG180 <- gjrm(f.list, data = meps, margins = mr, BivD = "G180", Model = "B") conv.check(bpJ0) AIC(bpN, bpF, bpC0, bpC180, bpJ0, bpJ180, bpG0, bpG180) set.seed(1) summary(bpJ0, cex.axis = 1.6, cex.lab = 1.6, cex.main = 1.7) #dev.copy(postscript, "contplot.eps") #dev.off() par(mfrow = c(2, 2), mar = c(4.5, 4.5, 2, 2), cex.axis = 1.6, cex.lab = 1.6) plot(bpJ0, eq = 1, seWithMean = TRUE, scale = 0, shade = TRUE, pages = 1, jit = TRUE) #dev.copy(postscript, "spline1.eps") #dev.off() par(mfrow = c(2, 2), mar = c(4.5, 4.5, 2, 2), cex.axis = 1.6, cex.lab = 1.6) plot(bpJ0, eq = 2, seWithMean = TRUE, scale = 0, shade = TRUE, pages = 1, jit = TRUE) #dev.copy(postscript, "spline2.eps") #dev.off() set.seed(1) AT(bpJ0, nm.end = "private", hd.plot = TRUE, cex.axis = 1.5, cex.lab = 1.5, cex.main = 1.6) #dev.copy(postscript, "hd.plotAT.eps") #dev.off() AT(bpJ0, nm.end = "private", type = "univariate") AT(bpJ0, nm.end = "private", type = "naive") ## End(Not run) #
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.