Generate a Random Orthogonal Rotation
Random orthogonal rotation to use as Tmat matrix to start GPForth or GPFoblq.
Random.Start(k)
k |
An integer indicating the dimension of the square matrix. |
The random start function produces an orthogonal matrix with columns of length one based on the QR decompostion.
An orthogonal matrix.
Coen A. Bernaards and Robert I. Jennrich with some R modifications by Paul Gilbert
Global.min <- function(A,method,B=10){ fv <- rep(0,B) seeds <- sample(1e+7, B) for(i in 1:B){ cat(i," ") set.seed(seeds[i]) gpout <- GPFoblq(A=A, Random.Start(ncol(A)), method=method) dtab <- dim(gpout$Table) fv[i] <- gpout$Table[dtab[1],2] cat(fv[i], "\n") } cat("Min is ",min(fv),"\n") set.seed(seeds[order(fv)[1]]) ans <- GPFoblq(A=A, Random.Start(ncol(A)), method=method) ans } data("Thurstone", package="GPArotation") Global.min(box26,"simplimax",10)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.