Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

GauPro_base

Class providing object with methods for fitting a GP model


Description

Class providing object with methods for fitting a GP model

Class providing object with methods for fitting a GP model

Format

R6Class object.

Value

Object of R6Class with methods for fitting GP model.

Methods

new(X, Z, corr="Gauss", verbose=0, separable=T, useC=F,useGrad=T, parallel=T, nug.est=T, ...)

This method is used to create object of this class with X and Z as the data.

update(Xnew=NULL, Znew=NULL, Xall=NULL, Zall=NULL, restarts = 5, param_update = T, nug.update = self$nug.est)

This method updates the model, adding new data if given, then running optimization again.

Public fields

X

Design matrix

Z

Responses

N

Number of data points

D

Dimension of data

corr

Type of correlation function

nug.min

Minimum value of nugget

nug

Value of the nugget, is estimated unless told otherwise

separable

Are the dimensions separable?

verbose

0 means nothing printed, 1 prints some, 2 prints most.

useGrad

Should grad be used?

useC

Should C code be used?

parallel

Should the code be run in parallel?

parallel_cores

How many cores are there? It will self detect, do not set yourself.

Active bindings

corr

Type of correlation function

separable

Are the dimensions separable?

Methods

Public methods


Method corr_func()

Usage
GauPro_base$corr_func(...)

Method new()

Usage
GauPro_base$new(
  X,
  Z,
  verbose = 0,
  useC = F,
  useGrad = T,
  parallel = FALSE,
  nug = 1e-06,
  nug.min = 1e-08,
  nug.est = T,
  param.est = TRUE,
  ...
)

Method initialize_GauPr()

Usage
GauPro_base$initialize_GauPr()

Method fit()

Usage
GauPro_base$fit(X, Z)

Method update_K_and_estimates()

Usage
GauPro_base$update_K_and_estimates()

Method predict()

Usage
GauPro_base$predict(XX, se.fit = F, covmat = F, split_speed = T)

Method pred()

Usage
GauPro_base$pred(XX, se.fit = F, covmat = F, split_speed = T)

Method pred_one_matrix()

Usage
GauPro_base$pred_one_matrix(XX, se.fit = F, covmat = F)

Method pred_mean()

Usage
GauPro_base$pred_mean(XX, kx.xx)

Method pred_meanC()

Usage
GauPro_base$pred_meanC(XX, kx.xx)

Method pred_var()

Usage
GauPro_base$pred_var(XX, kxx, kx.xx, covmat = F)

Method pred_LOO()

Usage
GauPro_base$pred_LOO(se.fit = FALSE)

Method cool1Dplot()

Usage
GauPro_base$cool1Dplot(
  n2 = 20,
  nn = 201,
  col2 = "gray",
  xlab = "x",
  ylab = "y",
  xmin = NULL,
  xmax = NULL,
  ymin = NULL,
  ymax = NULL
)

Method plot1D()

Usage
GauPro_base$plot1D(
  n2 = 20,
  nn = 201,
  col2 = 2,
  xlab = "x",
  ylab = "y",
  xmin = NULL,
  xmax = NULL,
  ymin = NULL,
  ymax = NULL
)

Method plot2D()

Usage
GauPro_base$plot2D()

Method loglikelihood()

Usage
GauPro_base$loglikelihood(mu = self$mu_hat, s2 = self$s2_hat)

Method optim()

Usage
GauPro_base$optim(
  restarts = 5,
  param_update = T,
  nug.update = self$nug.est,
  parallel = self$parallel,
  parallel_cores = self$parallel_cores
)

Method optimRestart()

Usage
GauPro_base$optimRestart(
  start.par,
  start.par0,
  param_update,
  nug.update,
  optim.func,
  optim.grad,
  optim.fngr,
  lower,
  upper,
  jit = T
)

Method update()

Usage
GauPro_base$update(
  Xnew = NULL,
  Znew = NULL,
  Xall = NULL,
  Zall = NULL,
  restarts = 5,
  param_update = self$param.est,
  nug.update = self$nug.est,
  no_update = FALSE
)

Method update_data()

Usage
GauPro_base$update_data(Xnew = NULL, Znew = NULL, Xall = NULL, Zall = NULL)

Method update_corrparams()

Usage
GauPro_base$update_corrparams(...)

Method update_nugget()

Usage
GauPro_base$update_nugget(...)

Method deviance_searchnug()

Usage
GauPro_base$deviance_searchnug()

Method nugget_update()

Usage
GauPro_base$nugget_update()

Method grad_norm()

Usage
GauPro_base$grad_norm(XX)

Method sample()

Usage
GauPro_base$sample(XX, n = 1)

Method print()

Usage
GauPro_base$print()

Method clone()

The objects of this class are cloneable with this method.

Usage
GauPro_base$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

#n <- 12
#x <- matrix(seq(0,1,length.out = n), ncol=1)
#y <- sin(2*pi*x) + rnorm(n,0,1e-1)
#gp <- GauPro(X=x, Z=y, parallel=FALSE)

GauPro

Gaussian Process Fitting

v0.2.4
GPL-3
Authors
Collin Erickson
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.