Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

kernel_product

Gaussian Kernel R6 class


Description

Gaussian Kernel R6 class

Gaussian Kernel R6 class

Format

R6Class object.

Value

Object of R6Class with methods for fitting GP model.

Super class

GauPro::GauPro_kernel -> GauPro_kernel_product

Public fields

k1

kernel 1

k2

kernel 2

k1_param_length

param length of kernel 1

k2_param_length

param length of kernel 2

k1pl

param length of kernel 1

k2pl

param length of kernel 2

s2

Variance

Methods

Public methods

Inherited methods

Method new()

Initialize kernel

Usage
kernel_product$new(k1, k2)
Arguments
k1

Kernel 1

k2

Kernel 2


Method k()

Calculate covariance between two points

Usage
kernel_product$k(x, y = NULL, params, ...)
Arguments
x

vector.

y

vector, optional. If excluded, find correlation of x with itself.

params

parameters to use instead of beta and s2.

...

Not used


Method param_optim_start()

Starting point for parameters for optimization

Usage
kernel_product$param_optim_start(jitter = F, y)
Arguments
jitter

Should there be a jitter?

y

Output


Method param_optim_start0()

Starting point for parameters for optimization

Usage
kernel_product$param_optim_start0(jitter = F, y)
Arguments
jitter

Should there be a jitter?

y

Output


Method param_optim_lower()

Lower bounds of parameters for optimization

Usage
kernel_product$param_optim_lower()

Method param_optim_upper()

Upper bounds of parameters for optimization

Usage
kernel_product$param_optim_upper()

Method set_params_from_optim()

Set parameters from optimization output

Usage
kernel_product$set_params_from_optim(optim_out)
Arguments
optim_out

Output from optimization


Method dC_dparams()

Derivative of covariance with respect to parameters

Usage
kernel_product$dC_dparams(params = NULL, C, X, C_nonug, nug)
Arguments
params

Kernel parameters

C

Covariance with nugget

X

matrix of points in rows

C_nonug

Covariance without nugget added to diagonal

nug

Value of nugget


Method C_dC_dparams()

Calculate covariance matrix and its derivative with respect to parameters

Usage
kernel_product$C_dC_dparams(params = NULL, X, nug)
Arguments
params

Kernel parameters

X

matrix of points in rows

nug

Value of nugget


Method dC_dx()

Derivative of covariance with respect to X

Usage
kernel_product$dC_dx(XX, X)
Arguments
XX

matrix of points

X

matrix of points to take derivative with respect to


Method s2_from_params()

Get s2 from params vector

Usage
kernel_product$s2_from_params(params, s2_est = self$s2_est)
Arguments
params

parameter vector

s2_est

Is s2 being estimated?


Method clone()

The objects of this class are cloneable with this method.

Usage
kernel_product$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

k1 <- Exponential$new(beta=1)
k2 <- Matern32$new(beta=2)
k <- k1 + k2
k$k(matrix(c(2,1), ncol=1))

GauPro

Gaussian Process Fitting

v0.2.4
GPL-3
Authors
Collin Erickson
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.