Find Starting Values for Fitting a normal inverse Gaussian Distribution
Finds starting values for input to a maximum likelihood routine for fitting normal inverse Gaussian distribution to data.
nigFitStart(x, startValues = c("FN","Cauchy","MoM","US"), paramStart = NULL, startMethodMoM = c("Nelder-Mead","BFGS"), ...) nigFitStartMoM(x, startMethodMoM = "Nelder-Mead", ...)
Possible values of the argument startValues
are the following:
If startValues = "US"
then a value must be supplied for
paramStart
.
If startValues = "MoM"
, nigFitStartMoM
is
called. If startValues = "MoM"
an initial
optimisation is needed to find the starting values. These
optimisations call optim
.
nigFitStart
returns a list with components:
paramStart |
A vector with elements |
xName |
A character string with the actual |
breaks |
The cell boundaries found by a call to
|
midpoints |
The cell midpoints found by a call to
|
empDens |
The estimated density found by a call to
|
nigFitStartMoM
returns only the method of moments estimates
as a vector with elements mu
, delta
, alpha
and
beta
.
David Scott d.scott@auckland.ac.nz, Christine Yang Dong
Barndorff-Nielsen, O. (1977) Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. Lond., A353, 401–419.
Barndorff-Nielsen, O., Blæsild, P., Jensen, J., and Sörenson, M. (1985). The fascination of sand. In A celebration of statistics, The ISI Centenary Volume, eds., Atkinson, A. C. and Fienberg, S. E., pp. 57–87. New York: Springer-Verlag.
Fieller, N. J., Flenley, E. C. and Olbricht, W. (1992) Statistics of particle size data. Appl. Statist., 41, 127–146.
param <- c(2, 2, 2, 1) dataVector <- rnig(500, param = param) nigFitStart(dataVector, startValues = "FN") nigFitStartMoM(dataVector) nigFitStart(dataVector, startValues = "MoM")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.