plot x and y, with optional straight line fit and display of squared residuals
Plot x
and y
,
with optional fitted line and display of squared residuals.
By default the least squares line is calculated and used.
Any other straight line
can be specified by placing its coefficients in coef.model
.
Any other fitted model can be calculated by specifying the model
argument.
Any other function of one variable can be specified in the
alt.function
argument. At most one of the arguments
model
, coef.model
, alt.function
can be specified.
regr1.plot(x, y, model=lm(y~x), coef.model, alt.function, main="put a useful title here", xlab=deparse(substitute(x)), ylab=deparse(substitute(y)), jitter.x=FALSE, resid.plot=FALSE, points.yhat=TRUE, pch=16, ..., length.x.set=51, x.name, pch.yhat=16, cex.yhat=par()$cex*.7, err=-1)
x |
x variable |
y |
y variable |
model |
Defaults to the simple linear model |
coef.model |
Defaults to the coefficients of the |
alt.function |
Any function of a single argument can be placed
here. |
main, xlab, ylab |
arguments to |
jitter.x |
logical. If |
resid.plot |
If |
points.yhat |
logical. If |
... |
other arguments. |
length.x.set |
number of points used to plot the predicted values. |
x.name |
If the |
pch |
Plotting character for the observed points. |
pch.yhat |
Plotting character for the fitted points. |
cex.yhat |
|
err |
The default |
This plot is designed as a pedagogical example for introductory courses.
When resid.plot=="square"
, then we actually see the set of squares
for which the sum of their areas is minimized by the method of "least squares".
Richard M. Heiberger <rmh@temple.edu>
Heiberger, Richard M. and Holland, Burt (2015). Statistical Analysis and Data Display: An Intermediate Course with Examples in R. Second Edition. Springer-Verlag, New York. https://www.springer.com/us/book/9781493921218
Smith, W. and Gonick, L. (1993). The Cartoon Guide to Statistics. HarperCollins.
data(hardness) ## linear and quadratic regressions hardness.lin.lm <- lm(hardness ~ density, data=hardness) hardness.quad.lm <- lm(hardness ~ density + I(density^2), data=hardness) anova(hardness.quad.lm) ## quadratic term has very low p-value par(mfrow=c(1,2)) regr1.plot(hardness$density, hardness$hardness, resid.plot="square", main="squared residuals for linear fit", xlab="density", ylab="hardness", points.yhat=FALSE, xlim=c(20,95), ylim=c(0,3400)) regr1.plot(hardness$density, hardness$hardness, model=hardness.quad.lm, resid.plot="square", main="squared residuals for quadratic fit", xlab="density", ylab="hardness", points.yhat=FALSE, xlim=c(20,95), ylim=c(0,3400)) par(mfrow=c(1,1))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.