Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

JGL

Performs the Joint Graphical Lasso for Sparse Inverse Covariance Estimation on Multiple Classes

The Joint Graphical Lasso is a generalized method for estimating Gaussian graphical models/ sparse inverse covariance matrices/ biological networks on multiple classes of data. We solve JGL under two penalty functions: The Fused Graphical Lasso (FGL), which employs a fused penalty to encourage inverse covariance matrices to be similar across classes, and the Group Graphical Lasso (GGL), which encourages similar network structure between classes. FGL is recommended over GGL for most applications. Reference: Danaher P, Wang P, Witten DM. (2013) <doi:10.1111/rssb.12033>.

Functions (13)

JGL

Performs the Joint Graphical Lasso for Sparse Inverse Covariance Estimation on Multiple Classes

v2.3.1
GPL-2
Authors
Patrick Danaher
Initial release
2018-11-30

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.