Local linear estimates of mean function
Local linear estimates of mean function.
MeanEst(Lt, Ly, kern, bw, gridout)
Lt |
A |
Ly |
A |
kern |
A |
bw |
A scalar denoting the bandwidth. |
gridout |
A |
A list
containing the following components:
Grid |
A |
mean |
A |
# Generate data n <- 100 interval <- c(0, 10) lambda_1 <- 9 #the first eigenvalue lambda_2 <- 1.5 #the second eigenvalue eigfun <- list() eigfun[[1]] <- function(x){cos(pi * x/10)/sqrt(5)} eigfun[[2]] <- function(x){sin(pi * x/10)/sqrt(5)} score <- cbind(rnorm(n, 0, sqrt(lambda_1)), rnorm(n, 0, sqrt(lambda_2))) DataNew <- GenDataKL(n, interval = interval, sparse = 6:8, meanfun = function(x){x}, score = score, eigfun = eigfun, sd = sqrt(0.1)) # Mean function estimate at all observation time points bwOpt <- GetGCVbw1D(DataNew$Lt, DataNew$Ly, kern = "epan") meanest <- MeanEst(DataNew$Lt, DataNew$Ly, kern = "epan", bw = bwOpt, gridout = sort(unique(unlist(DataNew$Lt)))) plot(meanest$Grid, meanest$mean)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.