Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

dist.Inverse.Matrix.Gamma

Inverse Matrix Gamma Distribution


Description

This function provides the density for the inverse matrix gamma distribution.

Usage

dinvmatrixgamma(X, alpha, beta, Psi, log=FALSE)

Arguments

X

This is a k x k positive-definite covariance matrix.

alpha

This is a scalar shape parameter (the degrees of freedom), alpha.

beta

This is a scalar, positive-only scale parameter, beta.

Psi

This is a k x k positive-definite scale matrix.

log

Logical. If log=TRUE, then the logarithm of the density is returned.

Details

  • Application: Continuous Multivariate Matrix

  • Density: p(theta) = {|Psi|^alpha / [beta^(k alpha) Gamma[k](alpha)]} |theta|^[-alpha-(k+1)/2] exp(tr(-(1/beta)Psi theta^(-1)))

  • Inventors: Unknown

  • Notation 1: theta ~ IMG[k](alpha, beta, Psi)

  • Notation 2: p(theta) = IMG[k](theta | alpha, beta, Psi)

  • Parameter 1: shape alpha > 2

  • Parameter 2: scale beta > 0

  • Parameter 3: positive-definite k x k scale matrix Psi

  • Mean:

  • Variance:

  • Mode:

The inverse matrix gamma (IMG), also called the inverse matrix-variate gamma, distribution is a generalization of the inverse gamma distribution to positive-definite matrices. It is a more general and flexible version of the inverse Wishart distribution (dinvwishart), and is a conjugate prior of the covariance matrix of a multivariate normal distribution (dmvn) and matrix normal distribution (dmatrixnorm).

The compound distribution resulting from compounding a matrix normal with an inverse matrix gamma prior over the covariance matrix is a generalized matrix t-distribution.

The inverse matrix gamma distribution is identical to the inverse Wishart distribution when alpha = nu / 2 and beta = 2.

Value

dinvmatrixgamma gives the density.

Author(s)

See Also

Examples

library(LaplacesDemon)
k <- 10
dinvmatrixgamma(X=diag(k), alpha=(k+1)/2, beta=2, Psi=diag(k), log=TRUE)
dinvwishart(Sigma=diag(k), nu=k+1, S=diag(k), log=TRUE)

LaplacesDemon

Complete Environment for Bayesian Inference

v16.1.4
MIT + file LICENSE
Authors
Byron Hall [aut], Martina Hall [aut], Statisticat, LLC [aut], Eric Brown [ctb], Richard Hermanson [ctb], Emmanuel Charpentier [ctb], Daniel Heck [ctb], Stephane Laurent [ctb], Quentin F. Gronau [ctb], Henrik Singmann [cre]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.