Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

dist.Log.Laplace

Log-Laplace Distribution: Univariate Symmetric


Description

These functions provide the density, distribution function, quantile function, and random generation for the univariate, symmetric, log-Laplace distribution with location parameter location and scale parameter scale.

Usage

dllaplace(x, location=0, scale=1, log=FALSE)
pllaplace(q, location=0, scale=1)
qllaplace(p, location=0, scale=1)
rllaplace(n, location=0, scale=1)

Arguments

x, q

These are each a vector of quantiles.

p

This is a vector of probabilities.

n

This is the number of observations, which must be a positive integer that has length 1.

location

This is the location parameter mu.

scale

This is the scale parameter lambda, which must be positive.

log

Logical. If log=TRUE, then the logarithm of the density is returned.

Details

  • Application: Continuous Univariate

  • Density 1: p(theta) = ((sqrt(2)/lambda)^2 / (2*(sqrt(2)/lambda))) * exp(-(sqrt(2)/lambda)*(theta - mu)), theta >= exp(mu)

  • Density 2: p(theta) = ((sqrt(2)/lambda)^2 / (2*(sqrt(2)/lambda))) * exp((sqrt(2)/lambda)*(theta - mu)),theta < exp(mu)

  • Inventor: Pierre-Simon Laplace

  • Notation 1: theta ~ LL(mu, lambda)

  • Notation 2: p(theta) = LL(theta | mu, lambda)

  • Parameter 1: location parameter mu

  • Parameter 2: scale parameter lambda > 0

  • Mean: E(theta) =

  • Variance: var(theta) =

  • Mode: mode(theta) =

The univariate, symmetric log-Laplace distribution is derived from the Laplace distribution. Multivariate and asymmetric versions also exist.

These functions are similar to those in the VGAM package.

Value

dllaplace gives the density, pllaplace gives the distribution function, qllaplace gives the quantile function, and rllaplace generates random deviates.

References

Kozubowski, T. J. and Podgorski, K. (2003). "Log-Laplace Distributions". International Mathematical Journal, 3, p. 467–495.

See Also

Examples

library(LaplacesDemon)
x <- dllaplace(1,0,1)
x <- pllaplace(1,0,1)
x <- qllaplace(0.5,0,1)
x <- rllaplace(100,0,1)

#Plot Probability Functions
x <- seq(from=0.1, to=20, by=0.1)
plot(x, dllaplace(x,0,0.1), ylim=c(0,1), type="l", main="Probability Function",
     ylab="density", col="red")
lines(x, dllaplace(x,0,0.5), type="l", col="green")
lines(x, dllaplace(x,0,1.5), type="l", col="blue")
legend(2, 0.9, expression(paste(mu==0, ", ", lambda==0.1),
     paste(mu==0, ", ", lambda==0.5), paste(mu==0, ", ", lambda==1.5)),
     lty=c(1,1,1), col=c("red","green","blue"))

LaplacesDemon

Complete Environment for Bayesian Inference

v16.1.4
MIT + file LICENSE
Authors
Byron Hall [aut], Martina Hall [aut], Statisticat, LLC [aut], Eric Brown [ctb], Richard Hermanson [ctb], Emmanuel Charpentier [ctb], Daniel Heck [ctb], Stephane Laurent [ctb], Quentin F. Gronau [ctb], Henrik Singmann [cre]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.