Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

dist.Matrix.Gamma

Matrix Gamma Distribution


Description

This function provides the density for the matrix gamma distribution.

Usage

dmatrixgamma(X, alpha, beta, Sigma, log=FALSE)

Arguments

X

This is a k x k positive-definite precision matrix.

alpha

This is a scalar shape parameter (the degrees of freedom), alpha.

beta

This is a scalar, positive-only scale parameter, beta.

Sigma

This is a k x k positive-definite scale matrix.

log

Logical. If log=TRUE, then the logarithm of the density is returned.

Details

  • Application: Continuous Multivariate Matrix

  • Density: p(theta) = {|Sigma|^(-alpha) / [beta^(k alpha) Gamma[k](alpha)]} |theta|^[alpha-(k+1)/2] exp(tr(-(1/beta)Sigma^(-1)theta))

  • Inventors: Unknown

  • Notation 1: theta ~ MG[k](alpha, beta, Sigma)

  • Notation 2: p(theta) = MG[k](theta | alpha, beta, Sigma)

  • Parameter 1: shape alpha > 2

  • Parameter 2: scale beta > 0

  • Parameter 3: positive-definite k x k scale matrix Sigma

  • Mean:

  • Variance:

  • Mode:

The matrix gamma (MG), also called the matrix-variate gamma, distribution is a generalization of the gamma distribution to positive-definite matrices. It is a more general and flexible version of the Wishart distribution (dwishart), and is a conjugate prior of the precision matrix of a multivariate normal distribution (dmvnp) and matrix normal distribution (dmatrixnorm).

The compound distribution resulting from compounding a matrix normal with a matrix gamma prior over the precision matrix is a generalized matrix t-distribution.

The matrix gamma distribution is identical to the Wishart distribution when alpha = nu / 2 and beta = 2.

Value

dmatrixgamma gives the density.

Author(s)

See Also

Examples

library(LaplacesDemon)
k <- 10
dmatrixgamma(X=diag(k), alpha=(k+1)/2, beta=2, Sigma=diag(k), log=TRUE)
dwishart(Omega=diag(k), nu=k+1, S=diag(k), log=TRUE)

LaplacesDemon

Complete Environment for Bayesian Inference

v16.1.4
MIT + file LICENSE
Authors
Byron Hall [aut], Martina Hall [aut], Statisticat, LLC [aut], Eric Brown [ctb], Richard Hermanson [ctb], Emmanuel Charpentier [ctb], Daniel Heck [ctb], Stephane Laurent [ctb], Quentin F. Gronau [ctb], Henrik Singmann [cre]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.