Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

dist.Multivariate.Cauchy

Multivariate Cauchy Distribution


Description

These functions provide the density and random number generation for the multivariate Cauchy distribution.

Usage

dmvc(x, mu, S, log=FALSE)
rmvc(n=1, mu, S)

Arguments

x

This is either a vector of length k or a matrix with a number of columns, k, equal to the number of columns in scale matrix S.

n

This is the number of random draws.

mu

This is a numeric vector representing the location parameter, mu (the mean vector), of the multivariate distribution It must be of length k, as defined above.

S

This is a k x k positive-definite scale matrix S.

log

Logical. If log=TRUE, then the logarithm of the density is returned.

Details

  • Application: Continuous Multivariate

  • Density:

    p(theta) = Gamma[(1+k)/2] / {Gamma(1/2)1^(k/2)pi^(k/2)|Sigma|^(1/2)[1+(theta-mu)^T*Sigma^(-1)(theta-mu)]^[(1+k)/2]}

  • Inventor: Unknown (to me, anyway)

  • Notation 1: theta ~ MC[k](mu, Sigma)

  • Notation 2: p(theta) = MC[k](theta | mu, Sigma)

  • Parameter 1: location vector mu

  • Parameter 2: positive-definite k x k scale matrix Sigma

  • Mean: E(theta) = mu

  • Variance: var(theta) = undefined

  • Mode: mode(theta) = mu

The multivariate Cauchy distribution is a multidimensional extension of the one-dimensional or univariate Cauchy distribution. The multivariate Cauchy distribution is equivalent to a multivariate t distribution with 1 degree of freedom. A random vector is considered to be multivariate Cauchy-distributed if every linear combination of its components has a univariate Cauchy distribution.

The Cauchy distribution is known as a pathological distribution because its mean and variance are undefined, and it does not satisfy the central limit theorem.

Value

dmvc gives the density and rmvc generates random deviates.

Author(s)

See Also

Examples

library(LaplacesDemon)
x <- seq(-2,4,length=21)
y <- 2*x+10
z <- x+cos(y) 
mu <- c(1,12,2)
Sigma <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3)
f <- dmvc(cbind(x,y,z), mu, Sigma)

X <- rmvc(1000, rep(0,2), diag(2))
X <- X[rowSums((X >= quantile(X, probs=0.025)) &
     (X <= quantile(X, probs=0.975)))==2,]
joint.density.plot(X[,1], X[,2], color=TRUE)

LaplacesDemon

Complete Environment for Bayesian Inference

v16.1.4
MIT + file LICENSE
Authors
Byron Hall [aut], Martina Hall [aut], Statisticat, LLC [aut], Eric Brown [ctb], Richard Hermanson [ctb], Emmanuel Charpentier [ctb], Daniel Heck [ctb], Stephane Laurent [ctb], Quentin F. Gronau [ctb], Henrik Singmann [cre]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.