Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

dist.Scaled.Inverse.Wishart

Scaled Inverse Wishart Distribution


Description

These functions provide the density and random number generation for the scaled inverse Wishart distribution.

Usage

dsiw(Q, nu, S, zeta, mu, delta, log=FALSE)
   rsiw(nu, S, mu, delta)

Arguments

Q

This is the symmetric, positive-definite k x k matrix \textbf{Q}.

nu

This is the scalar degrees of freedom, nu regarding \textbf{Q}. The default recommendation is nu=k+1.

S

This is the symmetric, positive-semidefinite k x k scale matrix S regarding \textbf{Q}. The default recommendation is S=diag(k).

zeta

This is a positive-only vector of length k of auxiliary scale parameters zeta.

mu

This is a vector of length k of location hyperparameters mu regarding zeta.

delta

This is a positive-only vector of length k of scale hyperparameters delta regarding zeta.

log

Logical. If log=TRUE, then the logarithm of the density is returned.

Details

  • Application: Continuous Multivariate

  • Density: (see below)

  • Inventor: O'Malley and Zaslavsky (2005)

  • Notation 1: p(Sigma) ~ SIW(Q, nu, S, zeta, mu, delta)

  • Notation 2: p(Sigma) = SIW(Sigma | Q, nu, S, zeta, mu, delta)

  • Parameter 1: symmetric, positive-definite k x k matrix Q

  • Parameter 2: degrees of freedom nu

  • Parameter 3: symmetric, positive-semidefinite k x k scale matrix S

  • Parameter 4: Auxiliary scale parameter vector zeta

  • Parameter 5: Hyperparameter location vector mu

  • Parameter 6: Hyperparameter scale vector delta

  • Mean:

  • Variance:

  • Mode:

The scaled inverse Wishart (SIW) distribution is a prior probability distribution for a covariance matrix, and is an alternative to the inverse Wishart distribution.

While the inverse Wishart distribution is applied directly to covariance matrix Sigma, the SIW distribution is applied to a decomposed matrix \textbf{Q} and diagonal scale matrix zeta. For information on how to apply it to \textbf{Q}, see the example below.

SIW is more flexible than the inverse Wishart distribution because it has additional, and some say somewhat redundant, scale parameters. This makes up for one limitation of the inverse Wishart, namely that all uncertainty about posterior variances is represented in one parameter. The SIW prior may somewhat alleviate the dependency in the inverse Wishart between variances and correlations, though the SIW prior still retains some of this relationship.

The Huang-Wand (dhuangwand) prior is a hierarchical alternative.

Value

dsiw gives the density and rsiw generates random deviates.

References

O'Malley, A.J. and Zaslavsky, A.M. (2005), "Domain-Level Covariance Analysis for Survey Data with Structured Nonresponse".

See Also

Examples

library(LaplacesDemon)
### In the model specification function, input U and zeta, then:
# Q <- t(U) %*% U
# Zeta <- diag(zeta)
# Sigma <- Zeta %*% Q %*% Zeta
# Sigma.prior <- dsiw(Q, nu=Data$K+1, S=diag(Data$K), zeta, mu=0, delta=1)
### Examples
x <- dsiw(diag(3), 4, diag(3), runif(3), rep(0,3), rep(1,3), log=TRUE)
x <- rsiw(4, diag(3), rep(0,3), rep(1,3))

LaplacesDemon

Complete Environment for Bayesian Inference

v16.1.4
MIT + file LICENSE
Authors
Byron Hall [aut], Martina Hall [aut], Statisticat, LLC [aut], Eric Brown [ctb], Richard Hermanson [ctb], Emmanuel Charpentier [ctb], Daniel Heck [ctb], Stephane Laurent [ctb], Quentin F. Gronau [ctb], Henrik Singmann [cre]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.