Categorical Moderator Graph
Outputs a rich and detailed boxplot graphic for each level of the specified moderator (under a fixed or random effects model).
plotcat(es, var, mod, data, method="random", modname=NULL, title=NULL, ...)
es |
r or z' effect size. |
var |
Vaiance of es. |
mod |
Categorical moderator variable used for moderator analysis. |
method |
Default is |
data |
|
modname |
Name of moderator to appear on x axis of plot. Default is NULL. |
title |
Plot title. Default is NULL. |
... |
Additional arguments to be passed to ggplot. |
Boxplot graph with median, max, min, and outliers from a fixed or random effects categorical moderator analysis. Places jitter points (for each study) on the boxplots. The size of each point (representing a study in the analysis) are based on study weights where more precise studies have larger points. The ggplot2 package outputs the graphics.
AC Del Re & William T. Hoyt
Maintainer: AC Del Re acdelre@gmail.com
Cooper, H., Hedges, L.V., & Valentine, J.C. (2009). The handbook of research synthesis and meta-analysis (2nd edition). New York: Russell Sage Foundation.
id<-c(1:20) n<-c(10,20,13,22,28,12,12,36,19,12,36,75,33,121,37,14,40,16,14,20) r<-c(.68,.56,.23,.64,.49,-.04,.49,.33,.58,.18,-.11,.27,.26,.40,.49, .51,.40,.34,.42,.16) mod1<-c(1,2,3,4,1,2,8,7,5,3,9,7,5,4,3,2,3,5,7,1) dat<-data.frame(id,n,r,mod1) dat$var.r <- var_r(dat$r, dat$n) # MAc function to derive variance dat$z <- r_to_z(dat$r) # MAc function to convert to Fisher's z (z') dat$var.z <- var_z(dat$n) # MAc function for variance of z' dat$mods2 <- factor(rep(1:2, 10)) # Example ## Not run: plotcat(es = r, var = var.r, mod = mods2, data = dat, method= "random", modname= "Moderator") ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.