Plots three diagnostic plots to check the validity of the assumptions of linear model analysis.
Predicted vs observed plot tests for linearity, Scale-location plot tests for homoscedasticity, and Normal QQ plot tests for normality of the residuals.
diagnostic.mcmc(model, ...)
model |
MCMCglmm object (a model fitted by mcmc.qpcr or mcmc.qpcr.gauss), obtained with additional options, 'pl=T, pr=T' |
... |
Various plot() options to modify color, shape and size of the plotteed points. |
A plot with three panels.
Mikhail V. Matz, UT Austin <matz@utexas.edu>
Matz MV, Wright RM, Scott JG (2013) No Control Genes Required: Bayesian Analysis of qRT-PCR Data. PLoS ONE 8(8): e71448. doi:10.1371/journal.pone.0071448
# loading Cq data and amplification efficiencies data(coral.stress) data(amp.eff) # extracting a subset of data cs.short=subset(coral.stress, timepoint=="one") genecolumns=c(5,6,16,17) # specifying columns corresponding to genes of interest conditions=c(1:4) # specifying columns containing factors # calculating molecule counts and reformatting: dd=cq2counts(data=cs.short,genecols=genecolumns, condcols=conditions,effic=amp.eff,Cq1=37) # fitting the model mm=mcmc.qpcr( fixed="condition", data=dd, controls=c("nd5","rpl11"), pr=TRUE,pl=TRUE, # these flags are necessary for diagnostics nitt=4000 # remove this line when analyzing real data! ) diagnostic.mcmc(mm)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.