For two-way designs, plots mcmc.qpcr model predictions gene by gene
For each gene, plots model-predicted values and 95% credible intervals.
trellisByGene(modelSummary,xFactor,groupFactor, nrow=2,lineWidth=0.4,whiskerWidth=0.2,pointSize=2.5, facetScales="free_y",ylab="log(abundance)", legendPos="bottom",posDodge=0.3)
modelSummary |
two-way design model summary produced by HPDsummary() |
xFactor |
factor to form the x-axis |
groupFactor |
factor to form separate lines on the plot |
nrow |
number of rows in the resulting trellis plot |
lineWidth |
line width, passed as 'lwd' to geom_errorbar function (ggplot2) |
whiskerWidth |
width of the line denoting 95% CI margin, passed as 'width' to geom_errorbar function (ggplot2) |
pointSize |
passed as 'size' to geom_point function of ggplot2 |
facetScales |
passed as 'scales' to facet_wrap function of ggplot2 |
ylab |
y-axis label |
legendPos |
passed as 'legend.position' to theme function of ggplot2 |
posDodge |
position dodge, increase for more jitter |
A ggplot2 type object
Mikhal V. Matz, UT Austin, matz@utexas.edu
Matz MV, Wright RM, Scott JG (2013) No Control Genes Required: Bayesian Analysis of qRT-PCR Data. PLoS ONE 8(8): e71448. doi:10.1371/journal.pone.0071448
# loading Cq data and amplification efficiencies data(coral.stress) data(amp.eff) genecolumns=c(5,6,16,17) # specifying columns corresponding to genes of interest conditions=c(1:4) # specifying columns containing factors # calculating molecule counts and reformatting: dd=cq2counts(data=coral.stress,genecols=genecolumns, condcols=conditions,effic=amp.eff,Cq1=37) # fitting the 2-way model mm=mcmc.qpcr( fixed="condition+timepoint+condition:timepoint", data=dd, nitt=4000 # remark this line to analyze real data! ) # summarizing results ss=HPDsummary(mm,data=dd,summ.plot=FALSE) # plotting predicted means and 95% CIs gene by gene trellisByGene(ss,xFactor="condition",groupFactor="timepoint")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.