Plot histogram or QQ-plot of all p-values
This method plots a histogram or QQ-plot of p-values
for all tests performed by Matrix_eQTL_engine
.
## S3 method for class 'MatrixEQTL' plot( x, cex = 0.5, pch = 19, xlim = NULL, ylim = NULL, main = NULL, ...)
x |
An object returned by |
cex |
A numerical value giving the amount by which plotting text and symbols should be magnified relative to the default. |
pch |
Plotting "character", i.e., symbol to use.
See |
xlim |
Set the range of the horisontal axis. |
ylim |
Set the range of the vertical axis. |
main |
Plot title. |
... |
The plot type (histogram vs. QQ-plot) is determined by the
pvalue.hist
parameter in the call of
Matrix_eQTL_engine
function.
The method does not return any value.
The sample code below produces figures like these:
Histogram:
QQ-plot:
Andrey A Shabalin andrey.shabalin@gmail.com
The package website: http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/
See Matrix_eQTL_engine
for reference and sample code.
library(MatrixEQTL) # Number of samples n = 100 # Number of variables ngs = 2000 # Common signal in all variables pop = 0.2*rnorm(n) # data matrices snps.mat = matrix(rnorm(n*ngs), ncol = ngs) + pop gene.mat = matrix(rnorm(n*ngs), ncol = ngs) + pop + snps.mat*((1:ngs)/ngs)^9/2 # data objects for Matrix eQTL engine snps1 = SlicedData$new( t( snps.mat ) ) gene1 = SlicedData$new( t( gene.mat ) ) cvrt1 = SlicedData$new( ) rm(snps.mat, gene.mat) # Slice data in blocks of 500 variables snps1$ResliceCombined(500) gene1$ResliceCombined(500) # Produce no output files filename = NULL # tempfile() # Perform analysis recording information for a histogram meh = Matrix_eQTL_engine( snps = snps1, gene = gene1, cvrt = cvrt1, output_file_name = filename, pvOutputThreshold = 1e-100, useModel = modelLINEAR, errorCovariance = numeric(), verbose = TRUE, pvalue.hist = 100) plot(meh, col="grey") # Perform analysis recording information for a QQ-plot meq = Matrix_eQTL_engine( snps = snps1, gene = gene1, cvrt = cvrt1, output_file_name = filename, pvOutputThreshold = 1e-6, useModel = modelLINEAR, errorCovariance = numeric(), verbose = TRUE, pvalue.hist = "qqplot") plot(meq)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.