DataStack object
This function generates data according to the specified data model.
DataStack(data.model, sim.parameters)
data.model |
defines a |
sim.parameters |
defines a |
This function generates a data stack according to the data model and the simulation parameters objetcs. The object returned by the function is a DataStack object containing:
description |
a description of the object. |
data.set |
a list of size |
data.scenario.grid |
a data frame indicating all data scenarios according to the |
data.structure |
a list containing the data structure according to the |
sim.parameters |
a list containing the simulation parameters according to |
A specific data.set
of a DataStack
object can be extracted using the ExtractDataStack
function.
http://gpaux.github.io/Mediana/
See Also DataModel
and SimParameters
and ExtractDataStack
.
## Not run: # Generation of a DataStack object ################################## # Outcome parameter set 1 outcome1.placebo = parameters(mean = 0, sd = 70) outcome1.treatment = parameters(mean = 40, sd = 70) # Outcome parameter set 2 outcome2.placebo = parameters(mean = 0, sd = 70) outcome2.treatment = parameters(mean = 50, sd = 70) # Data model case.study1.data.model = DataModel() + OutcomeDist(outcome.dist = "NormalDist") + SampleSize(c(50, 55, 60, 65, 70)) + Sample(id = "Placebo", outcome.par = parameters(outcome1.placebo, outcome2.placebo)) + Sample(id = "Treatment", outcome.par = parameters(outcome1.treatment, outcome2.treatment)) # Simulation Parameters case.study1.sim.parameters = SimParameters(n.sims = 1000, proc.load = 2, seed = 42938001) # Generate data case.study1.data.stack = DataStack(data.model = case.study1.data.model, sim.parameters = case.study1.sim.parameters) # Print the data set generated in the 100th simulation run # for the 2nd data scenario for both samples case.study1.data.stack$data.set[[100]]$data.scenario[[2]] # Extract the same set of data case.study1.extracted.data.stack = ExtractDataStack(data.stack = case.study1.data.stack, data.scenario = 2, simulation.run = 100) # The same dataset can be obtained using case.study1.extracted.data.stack$data.set[[1]]$data.scenario[[1]]$sample # A carefull attention should be paid on the index of the result. # As only one data.scenario has been requested # the result for data.scenario = 2 is now in the first position (data.scenario[[1]]). ## End(Not run) ## Not run: #Use of a DataStack object in the CSE function ############################################## # Outcome parameter set 1 outcome1.placebo = parameters(mean = 0, sd = 70) outcome1.treatment = parameters(mean = 40, sd = 70) # Outcome parameter set 2 outcome2.placebo = parameters(mean = 0, sd = 70) outcome2.treatment = parameters(mean = 50, sd = 70) # Data model case.study1.data.model = DataModel() + OutcomeDist(outcome.dist = "NormalDist") + SampleSize(c(50, 55, 60, 65, 70)) + Sample(id = "Placebo", outcome.par = parameters(outcome1.placebo, outcome2.placebo)) + Sample(id = "Treatment", outcome.par = parameters(outcome1.treatment, outcome2.treatment)) # Simulation Parameters case.study1.sim.parameters = SimParameters(n.sims = 1000, proc.load = 2, seed = 42938001) # Generate data case.study1.data.stack = DataStack(data.model = case.study1.data.model, sim.parameters = case.study1.sim.parameters) # Analysis model case.study1.analysis.model = AnalysisModel() + Test(id = "Placebo vs treatment", samples = samples("Placebo", "Treatment"), method = "TTest") # Evaluation model case.study1.evaluation.model = EvaluationModel() + Criterion(id = "Marginal power", method = "MarginalPower", tests = tests("Placebo vs treatment"), labels = c("Placebo vs treatment"), par = parameters(alpha = 0.025)) # Simulation Parameters case.study1.sim.parameters = SimParameters(n.sims = 1000, proc.load = 2, seed = 42938001) # Perform clinical scenario evaluation case.study1.results = CSE(case.study1.data.stack, case.study1.analysis.model, case.study1.evaluation.model, case.study1.sim.parameters) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.