Clinical Trial Simulations
Provides a general framework for clinical trial simulations based on the Clinical Scenario Evaluation (CSE) approach. The package supports a broad class of data models (including clinical trials with continuous, binary, survival-type and count-type endpoints as well as multivariate outcomes that are based on combinations of different endpoints), analysis strategies and commonly used evaluation criteria.
Package: | Mediana |
Type: | Package |
Version: | 1.0.8 |
Date: | 2019-05-08 |
License: | GPL-2 |
Gautier Paux, Alex Dmitrienko
Maintainer: Gautier Paux <gautier@paux.fr>
Benda, N., Branson, M., Maurer, W., Friede, T. (2010). Aspects of modernizing drug development using clinical scenario planning and evaluation. Drug Information Journal. 44, 299-315.
Dmitrienko, A., Paux, G., Brechenmacher, T. (2016). Power calculations in clinical trials with complex clinical objectives. Journal of the Japanese Society of Computational Statistics. 28, 15-50.
Dmitrienko, A., Paux, G., Pulkstenis, E., Zhang, J. (2016). Tradeoff-based optimization criteria in clinical trials with multiple objectives and adaptive designs. Journal of Biopharmaceutical Statistics. 26, 120-140.
Dmitrienko, A. and Pulkstenis, E. (2017). Clinical Trial Optimization Using R. New-York : CRC Press.
Friede, T., Nicholas, R., Stallard, N., Todd, S., Parsons, N.R., Valdes-Marquez, E., Chataway, J. (2010). Refinement of the clinical scenario evaluation framework for assessment of competing development strategies with an application to multiple sclerosis. Drug Information Journal 44:713-718.
## Not run: # Clinical trial in patients with rheumatoid arthritis # Variable types var.type = parameters("BinomDist", "NormalDist") # Outcome distribution parameters plac.par = parameters(parameters(prop = 0.3), parameters(mean = -0.10, sd = 0.5)) dosel.par1 = parameters(parameters(prop = 0.40), parameters(mean = -0.20, sd = 0.5)) dosel.par2 = parameters(parameters(prop = 0.45), parameters(mean = -0.25, sd = 0.5)) dosel.par3 = parameters(parameters(prop = 0.50), parameters(mean = -0.30, sd = 0.5)) doseh.par1 = parameters(parameters(prop = 0.50), parameters(mean = -0.30, sd = 0.5)) doseh.par2 = parameters(parameters(prop = 0.55), parameters(mean = -0.35, sd = 0.5)) doseh.par3 = parameters(parameters(prop = 0.60), parameters(mean = -0.40, sd = 0.5)) # Correlation between two endpoints corr.matrix = matrix(c(1.0, 0.5, 0.5, 1.0), 2, 2) # Outcome parameter set 1 outcome1.plac = parameters(type = var.type, par = plac.par, corr = corr.matrix) outcome1.dosel = parameters(type = var.type, par = dosel.par1, corr = corr.matrix) outcome1.doseh = parameters(type = var.type, par = doseh.par1, corr = corr.matrix) # Outcome parameter set 2 outcome2.plac = parameters(type = var.type, par = plac.par, corr = corr.matrix) outcome2.dosel = parameters(type = var.type, par = dosel.par2, corr = corr.matrix) outcome2.doseh = parameters(type = var.type, par = doseh.par2, corr = corr.matrix) # Outcome parameter set 3 outcome3.plac = parameters(type = var.type, par = plac.par, corr = corr.matrix) outcome3.doseh = parameters(type = var.type, par = doseh.par3, corr = corr.matrix) outcome3.dosel = parameters(type = var.type, par = dosel.par3, corr = corr.matrix) # Data model data.model = DataModel() + OutcomeDist(outcome.dist = "MVMixedDist") + SampleSize(c(100, 120)) + Sample(id = list("Plac ACR20", "Plac HAQ-DI"), outcome.par = parameters(outcome1.plac, outcome2.plac, outcome3.plac)) + Sample(id = list("DoseL ACR20", "DoseL HAQ-DI"), outcome.par = parameters(outcome1.dosel, outcome2.dosel, outcome3.dosel)) + Sample(id = list("DoseH ACR20", "DoseH HAQ-DI"), outcome.par = parameters(outcome1.doseh, outcome2.doseh, outcome3.doseh)) family = families(family1 = c(1, 2), family2 = c(3, 4)) component.procedure = families(family1 ="HolmAdj", family2 = "HolmAdj") gamma = families(family1 = 0.8, family2 = 1) # Tests to which the multiplicity adjustment will be applied test.list = tests("Pl vs DoseH - ACR20", "Pl vs DoseL - ACR20", "Pl vs DoseH - HAQ-DI", "Pl vs DoseL - HAQ-DI") # Analysis model analysis.model = AnalysisModel() + MultAdjProc(proc = "MultipleSequenceGatekeepingAdj", par = parameters(family = family, proc = component.procedure, gamma = gamma), tests = test.list) + Test(id = "Pl vs DoseL - ACR20", method = "PropTest", samples = samples("Plac ACR20", "DoseL ACR20")) + Test(id = "Pl vs DoseH - ACR20", method = "PropTest", samples = samples("Plac ACR20", "DoseH ACR20")) + Test(id = "Pl vs DoseL - HAQ-DI", method = "TTest", samples = samples("DoseL HAQ-DI", "Plac HAQ-DI")) + Test(id = "Pl vs DoseH - HAQ-DI", method = "TTest", samples = samples("DoseH HAQ-DI", "Plac HAQ-DI")) # Evaluation model evaluation.model = EvaluationModel() + Criterion(id = "Marginal power", method = "MarginalPower", tests = tests("Pl vs DoseL - ACR20", "Pl vs DoseH - ACR20", "Pl vs DoseL - HAQ-DI", "Pl vs DoseH - HAQ-DI"), labels = c("Pl vs DoseL - ACR20", "Pl vs DoseH - ACR20", "Pl vs DoseL - HAQ-DI", "Pl vs DoseH - HAQ-DI"), par = parameters(alpha = 0.025)) + Criterion(id = "Disjunctive power - ACR20", method = "DisjunctivePower", tests = tests("Pl vs DoseL - ACR20", "Pl vs DoseH - ACR20"), labels = "Disjunctive power - ACR20", par = parameters(alpha = 0.025)) + Criterion(id = "Disjunctive power - HAQ-DI", method = "DisjunctivePower", tests = tests("Pl vs DoseL - HAQ-DI", "Pl vs DoseH - HAQ-DI"), labels = "Disjunctive power - HAQ-DI", par = parameters(alpha = 0.025)) # Simulation Parameters sim.parameters = SimParameters(n.sims = 1000, proc.load = 2, seed = 42938001) # Perform clinical scenario evaluation results = CSE(data.model, analysis.model, evaluation.model, sim.parameters) # Reporting presentation.model = PresentationModel() + Project(username = "[Mediana's User]", title = "Case study", description = "Clinical trial in patients with rheumatoid arthritis") + Section(by = c("outcome.parameter")) + Table(by = c("multiplicity.adjustment")) + CustomLabel(param = "sample.size", label = paste0("N = ", c(100, 120))) # Report Generation GenerateReport(presentation.model = presentation.model, cse.results = results, report.filename = "Case study.docx") ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.