Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

mestimate

Estimate for optimal fuzzifier m


Description

This function estimates an optimal setting of fuzzifier m

Usage

mestimate(eset)

Arguments

eset

object of class “ExpressionSet”

Details

Schwaemmle and Jensen proposed an method to estimate of m, which was motivated by the evaluation of fuzzy clustering applied to randomized datasets. The estimated m should give the minimum fuzzifier value which prevents clustering of randomized data.

Value

Estimate for optimal fuzzifier.

Author(s)

References

Schwaemmle and Jensen, Bioinformatics,Vol. 26 (22), 2841-2848, 2010

Examples

if (interactive()){
data(yeast)
# Data pre-processing
yeastF <- filter.NA(yeast)
yeastF <- fill.NA(yeastF)
yeastF <- standardise(yeastF)

#### parameter selection

#### parameter selection
# For fuzzifier m, we could use mestimate
m1 <- mestimate(yeastF)
m1 # 1.15

cl <- mfuzz(yeastF,c=20,m=m1)
mfuzz.plot(yeastF,cl=cl,mfrow=c(4,5))
}

Mfuzz

Soft clustering of time series gene expression data

v2.50.0
GPL-2
Authors
Matthias Futschik <matthias.futschik@sysbiolab.eu>
Initial release
2016-10-18

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.