Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

CAC

calculate common allometric component


Description

calculate common allometric component

Usage

CAC(x, size, groups = NULL, log = FALSE)

Arguments

x

datamatrix (e.g. with PC-scores) or 3D-array with landmark coordinates

size

vector with Centroid sizes

groups

grouping variable

log

logical: use log(size)

Value

CACscores

common allometric component scores

CAC

common allometric component

x

(group-) centered data

sc

CAC reprojected into original space by applying CAC %*% x

RSCscores

residual shape component scores

RSC

residual shape components

gmeans

groupmeans

CS

the centroid sizes (log transformed if log = TRUE)

References

Mitteroecker P, Gunz P, Bernhard M, Schaefer K, Bookstein FL. 2004. Comparison of cranial ontogenetic trajectories among great apes and humans. Journal of Human Evolution 46(6):679-97.

Examples

data(boneData)
proc <- procSym(boneLM)
pop.sex <- name2factor(boneLM,which=3:4)
cac <- CAC(proc$rotated,proc$size,pop.sex)
plot(cac$CACscores,cac$size)#plot scores against Centroid size
cor.test(cac$CACscores,cac$size)#check for correlation
#visualize differences between large and small on the sample's consensus
## Not run: 
large <- showPC(max(cac$CACscores),cac$CAC,proc$mshape)
small <- showPC(min(cac$CACscores),cac$CAC,proc$mshape)
deformGrid3d(small,large,ngrid=0)

## End(Not run)

Morpho

Calculations and Visualisations Related to Geometric Morphometrics

v2.8
GPL-2
Authors
Stefan Schlager [aut, cre, cph], Gregory Jefferis [ctb], Dryden Ian [cph]
Initial release
2020-02-26

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.