Binary Distances
Calculates distances among rows of a binary data matrix or among the rows of two binary matrices. The end user will use BinaryProximities rather than this function. Input must be a matrix with 0 or 1 values.
BinaryDistances(x, y = NULL, coefficient= "Simple_Matching", transformation="sqrt(1-S)")
x |
Main binary data matrix. Distances among rows are calculated if y=NULL. |
y |
Second binary data matrix. If not NULL the distances among the rows of x and y are calculated |
coefficient |
Similarity coefficient. Use the name (see details) |
transformation |
Transformation of the similarities. Use the name (see details) |
The following coefficients are calculated
1.- Kulezynski = a/(b + c)
2.- Russell_and_Rao = a/(a + b + c+d)
3.- Jaccard = a/(a + b + c)
4.- Simple_Matching = (a + d)/(a + b + c + d)
5.- Anderberg = a/(a + 2 * (b + c))
6.- Rogers_and_Tanimoto = (a + d)/(a + 2 * (b + c) + d)
7.- Sorensen_Dice_and_Czekanowski = a/(a + 0.5 * (b + c))
8.- Sneath_and_Sokal = (a + d)/(a + 0.5 * (b + c) + d)
9.- Hamman = (a - (b + c) + d)/(a + b + c + d)
10.- Kulezynski = 0.5 * ((a/(a + b)) + (a/(a + c)))
11.- Anderberg2 = 0.25 * (a/(a + b) + a/(a + c) + d/(c + d) + d/(b + d))
12.- Ochiai = a/sqrt((a + b) * (a + c))
13.- S13 = (a * d)/sqrt((a + b) * (a + c) * (d + b) * (d + c))
14.- Pearson_phi = (a * d - b * c)/sqrt((a + b) * (a + c) * (d + b) * (d + c))
15.- Yule = (a * d - b * c)/(a * d + b * c)
The following transformations of the similarity3 are calculated
1.- 'Identity' dis=sim
2.- '1-S' dis=1-sim
3.- 'sqrt(1-S)' dis = sqrt(1 - sim)
4.- '-log(s)' dis=-1*log(sim)
5.- '1/S-1' dis=1/sim -1
6.- 'sqrt(2(1-S))' dis== sqrt(2*(1 - sim))
7.- '1-(S+1)/2' dis=1-(sim+1)/2
8.- '1-abs(S)' dis=1-abs(sim)
9.- '1/(S+1)' dis=1/(sim)+1
An object of class proximities
.This has components:
comp1 |
Description of 'comp1' |
Jose Luis Vicente-Villardon
Gower, J. C. (2006) Similarity dissimilarity and Distance, measures of. Encyclopedia of Statistical Sciences. 2nd. ed. Volume 12. Wiley
data(spiders)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.