Calculate A(T)
Calculate the values of A(T) for a given N-factor model parameters and observations. Primarily purpose is for application within other functions of the NFCP
package.
A_T(parameters, Tt)
parameters |
A named vector of parameters of an N-factor model. Function |
Tt |
A vector or matrix of the time-to-maturity of observed futures prices |
Under the assumption that Factor 1 follows a Brownian Motion, A(T) is given by: \[A(T) = \mu^*T-\sum_{i=1}^N - \frac{1-e^{-\kappa_i T}\lambda_i}{\kappa_i}+\frac{1}{2}(\sigma_1^2T + \sum_{i.j\neq 1} \sigma_i \sigma_j \rho_{i,j} \frac{1-e^{-(\kappa_i+\kappa_j)T}}{\kappa_i+\kappa_j})\]
A matrix of identical dimensions to T providing the values of function A(T) of a given N-factor model and observations.
Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in Commodity Prices. Manage. Sci., 46, 893-911.
Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.
##Calculate time homogeneous values of A(T) for the ##Schwartz and Smith (2000) two-factor model: SS_oil_A_T <- A_T(SS_oil$two_factor, SS_oil$stitched_TTM)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.