Bayes Inversion
Given a linear inverse problem Gm=d, a prior mean mprior and covariance matrix covm, data d, and data covariance matrix covd, this function computes the MAP solution and the corresponding covariance matrix.
bayes(G, mprior, covm, d, covd)
G |
Design Matrix |
mprior |
vector, prior model |
covm |
vector, model covariance |
d |
vector, right hand side |
covd |
vector, data covariance |
vector model
Jonathan M. Lees<jonathan.lees@unc.edu>
Aster, R.C., C.H. Thurber, and B. Borchers, Parameter Estimation and Inverse Problems, Elsevier Academic Press, Amsterdam, 2005.
## Not run: set.seed(2015) G = setDesignG() ### mtruem=matrix(rep(0, 16*16), ncol=16,nrow=16); mtruem[9,9]=1; mtruem[9,10]=1; mtruem[9,11]=1; mtruem[10,9]=1; mtruem[10,11]=1; mtruem[11,9]=1; mtruem[11,10]=1; mtruem[11,11]=1; mtruem[2,3]=1; mtruem[2,4]=1; mtruem[3,3]=1; mtruem[3,4]=1; ### mtruev=as.vector(mtruem); imagesc(matrix(mtruem,16,16) , asp=1 , main="True Model" ); matrix(mtruem,16,16) , asp=1 , main="True Model" ) ### dtrue=G %*% mtruev; ### d=dtrue+0.01*rnorm(length(dtrue)); covd = 0.1*diag( nrow=length(d) ) covm = 1*diag( nrow=dim(G)[2] ) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.