Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

bayes

Bayes Inversion


Description

Given a linear inverse problem Gm=d, a prior mean mprior and covariance matrix covm, data d, and data covariance matrix covd, this function computes the MAP solution and the corresponding covariance matrix.

Usage

bayes(G, mprior, covm, d, covd)

Arguments

G

Design Matrix

mprior

vector, prior model

covm

vector, model covariance

d

vector, right hand side

covd

vector, data covariance

Value

vector model

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Aster, R.C., C.H. Thurber, and B. Borchers, Parameter Estimation and Inverse Problems, Elsevier Academic Press, Amsterdam, 2005.

Examples

## Not run: 
set.seed(2015)
G = setDesignG()
### 
mtruem=matrix(rep(0, 16*16), ncol=16,nrow=16);

mtruem[9,9]=1; mtruem[9,10]=1; mtruem[9,11]=1;
mtruem[10,9]=1; mtruem[10,11]=1;
mtruem[11,9]=1; mtruem[11,10]=1; mtruem[11,11]=1;
mtruem[2,3]=1; mtruem[2,4]=1;
mtruem[3,3]=1; mtruem[3,4]=1;

### 
mtruev=as.vector(mtruem);
imagesc(matrix(mtruem,16,16) , asp=1 , main="True Model" );


matrix(mtruem,16,16) , asp=1 , main="True Model" )


### 
dtrue=G %*% mtruev;

### 
d=dtrue+0.01*rnorm(length(dtrue));
covd = 0.1*diag( nrow=length(d) )
covm = 1*diag( nrow=dim(G)[2] )

## End(Not run)

PEIP

Geophysical Inverse Theory and Optimization

v2.2-3
GPL (>= 2)
Authors
Jonathan M. Lees [aut, cre]
Initial release
2020-08-28

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.