Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

sirt

SIRT Algorithm for sparse matrix inversion


Description

Row action method for inversion of matrices, using SIRT algorithm.

Usage

sirt(A, b, tolx, maxiter)

Arguments

A

Design Matrix

b

vector, Right hand side

tolx

numeric, tolerance for stopping

maxiter

integer, Maximum iterations

Details

Iterates until conversion

Value

Solution vector

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Lees, J. M. and R. S. Crosson (1989): Tomographic inversion for three-dimensional velocity structure at Mount St. Helens using earthquake data, J. Geophys. Res., 94(B5), 5716-5728.

See Also

art, kac

Examples

set.seed(2015)
G = setDesignG()
###  Setup the true model.
mtruem=matrix(rep(0, 16*16), ncol=16,nrow=16);

mtruem[9,9]=1; mtruem[9,10]=1; mtruem[9,11]=1;
mtruem[10,9]=1; mtruem[10,11]=1;
mtruem[11,9]=1; mtruem[11,10]=1; mtruem[11,11]=1;
mtruem[2,3]=1; mtruem[2,4]=1;
mtruem[3,3]=1; mtruem[3,4]=1;

###  reshape the true model to be a vector
mtruev=as.vector(mtruem);

###  Compute the data.
dtrue=G %*% mtruev;

###  Add the noise.

d=dtrue+0.01*rnorm(length(dtrue));

msirt<-sirt(G,d,0.01,200)
par(mfrow=c(1,2))
imagesc(matrix(mtruem,16,16) , asp=1 , main="True Model" );

imagesc(matrix(msirt,16,16) , asp=1 , main="SIRT Solution" );

PEIP

Geophysical Inverse Theory and Optimization

v2.2-3
GPL (>= 2)
Authors
Jonathan M. Lees [aut, cre]
Initial release
2020-08-28

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.