Function for hypothesis testing for objects of class PK
Generic function for hypothesis testing based on an object of class PK
.
test(obj, theta=0, method = c("t", "fieller", "z", "resample"), nsample = 1000) ## S3 method for class 'PKtest' print(x,hyp=FALSE,...) ## S3 method for class 'PKtest' summary(object,...)
obj |
An output object of class PK. |
x |
An output object of class PKtest. |
object |
An output object of class PK test. |
theta |
The reference value to be tested against. If multiple parameters are to be tested a vector can be supplied. |
method |
A character string specifying the method for calculation of the test statistic. Possible values are |
nsample |
Number of resamples for the permutation/bootstrap test (default= |
hyp |
Logical variable indicating if hypothesis tests should be printed explicitly (default= |
... |
Arguments to be passed to methods, such as graphical. |
Generic function to perform hypothesis test(s).
The reference value for the test is to be specified in theta
. If multiple tests are performed theta can be a vector.
For method "resample"
a permutation test is used for the difference of AUCs while a one-sample bootstrap test based on inverting a bootstrap-t statistic is implemented.
An object of the class PKtest containing the following components:
stat |
Test statistics. |
p.value |
p-values. |
theta |
Reference value(s) tested against. |
conf.level |
Confidence level. |
alternative |
Type of alternative used. |
df |
Degrees of freedom of method |
design |
Sampling design used. |
method |
Type of test used. |
Thomas Jaki
Efron B and Tibshirani R. J. (1993). An introduction to the bootstrap, Chapman and Hall, New York.
Holder D. J., Hsuan F., Dixit R. and Soper K. (1999). A method for estimating and testing area under the curve in serial sacrifice, batch, and complete data designs. Journal of Biopharmaceutical Statistics, 9(3):451-464.
Wolfsegger M. J. and Jaki T. (2009) Assessing systemic drug exposure in repeated dose toxicity studies in the case of complete and incomplete sampling. Biometrical Journal, 51(6):1017:1029.
## example for a serial sampling data design from Wolfsegger and Jaki (2009) conc <- c(0, 0, 0, 2.01, 2.85, 2.43, 0.85, 1.00, 0.91, 0.46, 0.35, 0.63, 0.39, 0.32, 0.45, 0.11, 0.18, 0.19, 0.08, 0.09, 0.06) time <- c(rep(0,3), rep(5/60,3), rep(3,3), rep(6,3), rep(9,3), rep(16,3), rep(24,3)) obj <- nca(conc=conc, time=time, n.tail=4, dose=200, method="z", conf.level=0.95, design="ssd") ## testing all parameters against different values using a z-test res <- test(obj, theta=c(11, 12, 90, 7, 5, 16, 120), method="z") print(res) ## a batch design example from Holder et al. (1999). data(Rats) data <- subset(Rats,Rats$dose==100) obj <- auc(data=data,method=c('z','t'), design='batch') ## t-test res <- test(obj, theta=100, method="t") ## making the hypothesis explicit summary(res) ## bootstrap test for bioequivalence # Note: This can take a few seconds data(Glucose) ## one-sided permutation test obj <- auc(conc=Glucose$conc, time=Glucose$time, group=Glucose$date, method=c("t"), conf.level=0.90, alternative='less', nsample=100, design="complete") test(obj, theta=1, method="resample", nsample=100)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.